
STM32L4 technical training

Universal Serial Bus (USB)

Hands-on session



USB Lab 2
USB device in CDC class: MCU – PC communication using VCP 

(Virtual COM Port)



USB VCP communication

• Objective

• Learn how to design USB hardware with STM32L4

• Learn how to configure USB device (USB clock and USB CDC class) in CubeMX

• Learn how to configure joystick (four input GPIOs) in CubeMX

• Learn how to generate code in CubeMX and use HAL functions

• Method

• Create a bidirectional USB VCP communication between MCU and PC terminal



User USB hardware connection
• STM32L4 is optimised in terms of BOM for USB connectivity

• Pull-up resistor is embedded in USB PHY

• Serial resistors are not needed

• Internal RC 48MHz (MSI – Multi Speed Internal), which can be used to run USB, after trimming 

by LSE (Low Speed External)

48MHz RC

Vddusb

No external 

high-speed 

crystal needed 

to run USB



User USB connection
STM32L476RG-Discovery

• STM32F476RG-Discovery is equipped User USB connector. Pins assignment:

• PA11 (USB D-)

• PA12 (USB D+) 



STM32CubeMX
Selecting USB interface and USB class

• Create project in STM32CubeMX

• Menu > File > New Project

• Select STM32L4 -> STM32L4x6 -> LQFP100 package -> STM32L476VGTx

• Select USB:

• Select “Device_Only” for Mode of USB_OTG_FS

• Select „Communication Device Class (Virtual Port COM)” for Class For FS IP of 

USB_DEVICE



STM32CubeMX
Selecting LSE clock and Joystick buttons

• Select LSE:

• Select “Crystal/Ceramic Resonator” for Low Speed Clock (LSE) of RCC

LSE is 

needed to 

trimm the MSI



STM32CubeMX
clock configuration

• Go to Clock Configuration tab and configure MCU clock system:

1. Change MSI default value (4 MHz) to 48 MHz

2. Select MSI as a clock source for USB



STM32CubeMX
Configure USB 

• Go to Configuration tab and select USB peripheral



STM32CubeMX
configuration of USB VBUS

• Select Parameter Settings tab

• Disable VBUS sensing

• Press Ok to confirm the 

configuration



STM32CubeMX
Configure clock

• Go to Configuration tab and select RCC peripheral



STM32CubeMX
configuration of the MSI calibration with LSE

• Select Parameter Settings tab

• Enable MSI Auto Calibration

• Press Ok to confirm the 

configuration



STM32CubeMX
Project generation

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code



STM32 VCP driver
• In order to communicate between 

STM32 and PC terminal via VCP 

install driver

• In www.st.com find STSW-STM32102

• Click on Get Software button

• Install downloaded driver on PC

http://www.st.com/


• After successful code generation by STM32CubeMX this is the right 

time to import it into SW4STM32 toolchain for further processing



Modifying the code
data declaration and its sending - main.c file

Tasks:
1. Create the buffers with size of 2048 bytes for received and transmitted data

/* USER CODE BEGIN PV */

/* Private variables ---------------------------------------------------------*/

uint8_t UserTxBuffer[2048] = {'S', 'T', 'M', '3', '2', ' '};

uint8_t UserRxBuffer[2048];

/* USER CODE END PV */

Creation of two matrixes: first 

one to send the data and 

second one to receive the data

Tasks:
1. Call a function to associate previosulty created matrix with transmission buffer

2. Call a function to transmit packet with content from transmission buffer

3. Call a delay function to create a delay between sending of data in the loop

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

USBD_CDC_SetTxBuffer(&hUsbDeviceFS, UserTxBuffer, 6);

USBD_CDC_TransmitPacket(&hUsbDeviceFS);

HAL_Delay(500);

}

/* USER CODE END 3 */

Function call to assign 

matrix to transmission buffer 

Function call to send 

the buffer via USB VCP

Function call to create a 

delay between two 

consecutive data sendings



Modifying the code
receiving of VCP data - usbd_cdc_if.c file

Tasks:
1. Refer to the buffer, which was previously created for received data

2. In USB data reception handler call a function to copy received data to received buffer

/* USER CODE BEGIN PRIVATE_TYPES */

extern uint8_t UserRxBuffer[];

/* USER CODE END PRIVATE_TYPES */ 

static int8_t CDC_Receive_FS (uint8_t* Buf, uint32_t *Len)

{

/* USER CODE BEGIN 6 */

USBD_CDC_SetRxBuffer(&hUsbDeviceFS, &Buf[0]);

USBD_CDC_ReceivePacket(&hUsbDeviceFS);

strlcpy(UserRxBuffer, Buf, (*Len) + 1); 

return (USBD_OK);

/* USER CODE END 6 */ 

}

Creation of external matrix 

(reference to the same one 

from main.c) for data reception

Function call to assign 

matrix to reception buffer 

Function call to receive data 

via USB VCP

Function call to copy content 

of local matrix to global matrix



Running the application
• Connect STM32L476RG-Discovery 

with PC using micro USB cable

• Identify number of COM Port, which 

was assigned by PC’s operating 

system to STM32L476RG-Discovery



Running the application
• MCU -> PC communication

• Open PC terminal (for example RealTerm), connect 

to identified COM Port and observe the traffic

• PC -> MCU communication

• Open PC terminal (for example RealTerm), connect 

to identified COM and send some data

• In debug session observe content of the reception 

buffer

Any configuration of 

baudrate, stop/data 

bits and parity is ok



Further reading

• UM1734 – STM32Cube USB device library user manual

• STSW-STM32102 – STM32 VCP driver



Enjoy!

www.st.com/mcu

/STM32 @ST_World st.com/e2e

http://www.st.com/stm32l4

