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Application note

How to achieve the lowest current consumption
with STM32F2xx

Introduction
In embedded microcontroller applications, designers and developers have specific tasks to 
solve and their solutions are influenced by the resources that are available and the 
constraints of cost, time, physical size and technology choice. At the heart of many good 
products, microcontrollers have a crucial influence on system power design and particularly 
in a brave new world that’s concerned with energy efficiency

The STM32F2xx is one of the best high-performance microcontrollers that can be used to 
achieve a complete embedded application with the lowest current consumption.

This application note is intended for system designers who require a software and hardware 
implementation overview of the low-power modes of the STM32F2xx products. It describes 
how to use the STM32F2xx product family in low-power mode and details the clock systems, 
register settings and firmware development methods in order to optimize the use of energy 
in applications where low power is the key. 

This application note should be read in conjunction with the datasheet of the relevant 
STM32F2xx product and the STM32F2xx reference manual. For information on 
programming, erasing and protection of the internal Flash memory please refer to the 
STM32F2xx Flash programming manual.

The STM32F2xx datasheets, the reference and Flash programming manuals are all 
available from the STMicroelectronics website www.st.com.

www.st.com

http://www.st.com
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1 Power consumption factors

Information in this section is based on Proceedings of the IEEE, Vol.89, No.11, November 
2001.

Power dissipated in CMOS circuits consists of several components as indicated in the 
following equation:

Ptotal = Pswitching + Pshortcircuit + Pstatic + Pleakage

The total current consumption is a sum of:

● The power required to charge or switch a capacitive load (Pswitching), 

● Short circuit power consumed during output transitions of a CMOS gate as the input 
switches (Pshortcircuit), 

● Static power consumed by the device (Pstatic),

● Leakage power consumed by the device (Pleakage). 

Pswitching and Pshortcircuit components represent the dynamic power which is 
consumed when a device is actively changing state:

● Pswitching depends on the capacitive load, the voltage level and the system 
frequency: Pswitching = C * V² * f 

● Pshortcircuit occurs due to the overlapped conductance of both the PMOS and 
NMOS transistors forming a CMOS logic gate as the input signal transitions, this 
current draw depends on the average current drawn during the input transition and the 
voltage level: Pshortcircuit = Imean * V

Pstatic and Pleakage components represent the static power consumption which is 
negligible compared to dynamic consumption when the clock is running. 

● Pstatic is not usually a factor in pure CMOS designs, since static current is not 
drawn by a CMOS gate, but certain circuit structures such as sense amplifiers, voltage 
references, and constant current sources do exist in CMOS systems and contribute to 
overall power.

● Pleakage is due to leakage currents from reversed biased PN junctions associated 
with the source and drain of MOS transistors, as well as subthreshold conduction 
currents. The leakage component is proportional to device technology and 
temperature.

Power consumption thus depends on:

● Microcontroller unit (MCU) chip size: Technology used, number of transistors, 
analog features/peripherals embedded and used.

● MCU supply voltage: The amount of current used in CMOS logic is directly 
proportional to the voltage of the power supply squared. Thus, power consumption may 
be reduced by lowering the MCU supply voltage.

● Clock frequency: Power consumption may be reduced by decreasing the clock 
frequency when fast processing is not required by the application.

● Operating mode: Power consumption varies depending on the mode a particular 
application is running in (CPU on/off, oscillator on/off,...).

For an application powered by a battery, consumption is very important. Usually, average 
consumption should be below a certain target to ensure an optimum battery lifetime. 
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2 STM32F2 low power design

2.1 STM32F2 hardware design
To introduce STM32F2xx series as a high performance and low power microcontroller in the 
market requires that this new generation of STM32 family come with a challenge in terms of 
hardware design.

This hardware design contributes to the static and dynamic current consumption of the 
SMT32F2 microcontroller. This is why the CMOS technology used, as well as the system 
design changes from one microcontroller to another depending on the final target which will 
be covered by this microcontroller.

2.1.1 Internal supply structure

The device requires a 1.8 V to 3.6 V operating voltage supply (VDD), except for the WLCSP 
package which requires 1.65 V to 3.6 V. 

The real-time clock (RTC) and backup registers can be powered from the VBAT voltage when 
the main VDD supply is powered off.

Figure 1. Power supply overview

To retain the content of the Backup registers when VDD is turned off, the VBAT pin can be 
connected to an optional standby voltage supplied by a battery or another source.
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The VBAT pin also powers the RTC unit, allowing the RTC to operate even when the main 
digital supply (VDD) is turned off. The switch to the VBAT supply is controlled by the power 
down reset (PDR) circuitry embedded in the Reset block.

An embedded regulator is used to supply the internal 1.2 V digital power, which was 
designed to consume the lowest current consumption needed in conjunction with low power 
mode used. There are three different operating modes:

● In Run mode the regulator supplies full power to the 1.2 V domain (core, memories and 
digital peripherals).

● In Stop mode the regulator supplies low power to the 1.2 V domain, preserving the 
content of registers and internal SRAM.

● In Standby mode the regulator is powered down. The content of the registers and 
SRAM are lost except for the standby circuitry and the backup domain.

This regulator can also be bypassed by an external one which should supply directly the 
MCU with 1.2V injected on Vcap1 and Vcap2 pins (refer to Section 2.2.3).

2.1.2 Hardware environment

In the real application, there are other hardware components, such as  transceivers, external 
memories, Bluetooth chips or other microcontrollers which are connected to the STM32F2 
in order to achieve the application target. 

These components cause a current increase which affects both the static current 
consumption, depending on the PCB connection and hardware layout, and the dynamic 
consumption during MCU communications.

A well configured hardware design ensures the best current consumption for the final 
application.

For this reason we recommend following rules described in the Getting started with 
STM32F20xx/21xx MCU hardware development (AN3320).

Figure 2 summarizes some of these rules:
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Figure 2. Power supply hardware connection

Particular note should be paid to certain common hardware misconfigurations to avoid 
penalizing the total current consumption of the application; the top five are:

● REGOFF and IRROFF pin connection

Depending on the selected STM32F2xx package, these pins should be connected 
either to VDD or to VSS following the voltage regulator mode that user wants to 



AN3430 STM32F2 low power design

Doc ID 019009 Rev 1 7/38

configure. For more details, refer to section “Voltage regulator” in STM32F20xx/21xx 
datasheet for details.

● Vcap_1 and Vcap_2 pin connection: 

– If the user wants the voltage regulator to be active during the application, these 
pins must be connected to GND through 2.2uF ceramic capacitors.

– If the user wants to bypass the voltage regulator, these pins are used to inject the 
1.2V supply from an external power supply. In this case, the 2.2uF capacitors 
should be disconnected and replaced by 100nF ceramic decoupling capacitors.

● Unused pins not connected

All unused pins must be connected to ground through a 10K pull-down resistor to avoid 
external disturbance on the I/Os and increase the EMC performance.

● Because clocks can be a major factor of a high current consumption, specific attention 
must be paid to all clock input and outputs related to the MCU or to other components 
on the board.

Designers should be aware that clocking other components on the board by MCU clock 
through one output pin (such as the MCO) will increase the current consumption due to 
the I/O switching frequency. 

For this reason, it is up to the hardware designer to choose either routing a PCB wire 
from the MCO pin to other clock input components or use an external oscillator 
depending on the full set of clock requirements on the board (number of clock inputs 
and clock frequencies).

Note: Refer to Section 3.2.3: Practical example of current optimization on page 26 for information 
on the current consumption value versus clock output frequency.

● If no external battery is used in the application, it is highly recommended to connect 
VBAT externally to VDD with a 100 nF decoupling capacitor.

2.1.3 Clock management

Three different clock sources can be used to drive the system clock (SYSCLK):

● HSI oscillator clock

● HSE oscillator clock

● Main PLL (PLL) clock

The device has the two following secondary clock sources:

● 32 kHz low-speed internal RC (LSI RC), which drives the independent watchdog and, 
optionally, the RTC used for auto-wakeup from the stop/standby mode.

● 32.768 kHz low-speed external crystal (LSE crystal) which optionally drives the RTC 
clock (RTCCLK)

Each clock source can be switched on or off independently when it is not used to optimize 
power consumption.

Another source of energy saving is to bypass the HSE oscillator and clock the STM32F2 
with an external clock source, if another clock already available on the board for other 
devices.
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Figure 3. STM32F2 system clock



AN3430 STM32F2 low power design

Doc ID 019009 Rev 1 9/38

The clock controller provides a high degree of flexibility to the application with regards to the 
choice of the external crystal or the oscillator, which are used to run the core and 
peripherals at the highest frequency and guarantee the appropriate frequency for 
peripherals that need a specific clock like Ethernet, USB high speed and full speed, I2S and 
SDIO.

Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2) 
and the low-speed APB (APB1) domains. The maximum frequency of the AHB domain is 
120 MHz. The maximum allowed frequency of the high-speed APB2 domain is 60 MHz. The 
maximum allowed frequency of the low-speed APB1 domain is 30 MHz.

There are special cases to which software and hardware developers should pay attention 
when computing the current consumption budget versus the system frequency:

● Minimum system clock values required by some peripherals:

– When Ethernet is used, the AHB clock frequency must be at least 25 MHz.

– When USB full speed is used, the AHB clock frequency must be at least 14.2 
MHz.

– When USB high speed is used, the AHB clock frequency must be at least 30 MHz.

– When I2C is used to achieve standard mode I²C frequencies, the APB1 clock must 
be at least 2 MHz. 

To achieve fast mode I²C frequencies, the APB1 clock must be at least 4 MHz.

To achieve 400 kHz maximum I²C fast mode, the APB1 clock must be at least 
10 MHz.

● The timer clock frequencies:

– If the APB prescaler is 1, the timer clock frequencies are set to the same 
frequency as that of the APB domain to which the timers are connected.

– Otherwise, timer clock frequencies are set to twice (×2) the frequency of the APB 
domain to which the timers are connected.

This flexible system clock is one of the most important low power factors for STM32F2xx. 
Used efficiently, this improves the current consumption of the application by gating the 
unused PLL, APB domain or peripheral clocks.

2.2 STM32F2 low power configuration
STM32F2 embedded combined features of the supply controller and the power 
management controller provide a wide range of low power modes allowing system 
designers to choose the best trade-off between power consumption, wake-up time, clock 
frequency, wake-up sources and context backup.

2.2.1 Low power mode overview

By default, the microcontroller is in Run mode after a system or a power-on reset. Several 
low-power modes are available to save power when the CPU does not need to be kept 
running, for example when waiting for an external event. It is up to the user to select the 
mode that provides the best compromise between low-power consumption, short startup 
time and available wakeup sources.
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The devices feature three low-power modes:

● Sleep mode (Cortex-Mx core stopped, peripherals kept running)

● Stop mode (all clocks are stopped except the backup domain)

● Standby mode (1.2 V domain powered off)

Table 1. Low-power mode summary

For more information about low power modes, refer to RM0033 section “Low-power modes”.

2.2.2 Power consumption and wakeup time

This section provides observations and conclusions about the power consumption values 
already described in the STM32F20xx/21xx datasheet (refer to section Supply current 
characteristics” in the STM32F20xx/21xx datasheet for more detail about MCU conditions 
during measurement).

Warning: All current consumption results described in the 
STM32F20xx/21xx datasheet are measured using a board 
which only contains the MCU, boot pins (VDD,VSS) and 
decoupling capacitors (refer to Appendix A: Schematics).
Reproducing the low power measurement tests on the Eval 
board results in high current consumption values due to high 
integration hardware components on the board.

Run mode consumption

Following are the measurement results in run mode:

Mode name Entry Wakeup
Effect on 1.2 V 
domain clocks

Effect on 
VDD 

domain 
clocks

Voltage regulator

Sleep
(Sleep now or 
Sleep-on-exit)

WFI Any interrupt CPU CLK OFF
no effect on other 
clocks or analog 

clock sources

None ON
WFE Wakeup event 

Stop

PDDS and LPDS 
bits + 

SLEEPDEEP bit 
+ WFI or WFE

Any EXTI line (configured 
in the EXTI registers, 

internal and external lines)

All 1.2 V domain 
clocks OFF

HSI and 
HSE 

oscillators 
OFF

ON or in low- power 
mode (depends on 
PWR power control 

register 
(PWR_CR))

Standby
PDDS bit + 

SLEEPDEEP bit 
+ WFI or WFE 

WKUP pin rising edge, 
RTC alarm (Alarm A or 
Alarm B), RTC Wakeup 

event, RTC tamper event, 
RTC time stamp event, 
external reset in NRST 

pin, IWDG reset

OFF
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Figure 4. Typical current consumption vs. temperature, Run mode, code with data 
processing running from Flash, ART accelerator OFF, peripherals OFF

Figure 5. Typical current consumption vs. temperature, Run mode, code with data 
processing running from Flash memory (ART accelerator enabled) or 
RAM, Peripherals OFF 

Figure 4 and Figure 5 present the run mode current consumption values. The only 
difference between these two groups of results is the ART configuration—disabled in 
Figure 4 and enabled in Figure 5.
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Observation:

● Power consumption increases with clock frequency,

● Power consumption increases with temperature,

● Power consumption increases when disabling the ART accelerator.

Conclusion:

● Use the appropriate clock frequency; do not over clock the system if this is not needed

● Enable ART accelerator to reduce power consumption and increase the overall system 
speed and efficiency.

Sleep mode consumption and wakeup time

To reduce current consumption, the MCU can be put into sleep mode so the CPU core is 
stopped and peripherals are kept running. 

Current consumption values in sleep mode are described in the STM32F20xx/21xx 
datasheet. You can also use the example included in the standard peripherals library 
(STM32F2xx_StdPeriph_Lib\Project\STM32F2xx_StdPeriph_Examples\PWR\
CurrentConsumption) to have an idea of measuring sleep mode current consumption.

The following are the sleep mode measurement results:

Figure 6. Typical current consumption vs. temperature in sleep mode, peripherals 
OFF

In sleep mode the wakeup time is about 1 µs (refer to section “Wakeup time from low-power 
mode” in the STM32F20xx/21xx datasheet).

Observation:

● Power consumption increases with clock frequency

● Power consumption increases with temperature

Conclusion:
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Sleep mode can be used to reduce the current consumption of the application by stopping 
the CPU core while DMA handles the communication with the peripherals.

Stop mode consumption and wakeup time

The Stop mode is based on the Cortex-Mx deep sleep mode combined with peripheral clock 
gating. The voltage regulator can be configured either in run or low-power mode. In Stop 
mode, all clocks are stopped; the PLL, the HSI and the HSE RC oscillators are disabled. 
SRAM and register contents are preserved and all I/O pins keep the same state as in the 
Run mode.

For more information about current consumption values in stop mode, refer to section 
“Supply current characteristics” in the STM32F20xx/21xx datasheet.

You can also measure this current consumption using the example included in the standard 
peripherals library (STM32F2xx_StdPeriph_Lib\Project\ STM32F2xx_StdPeriph_Examples\ 
PWR\CurrentConsumption).

The following measurement results are in stop mode:

Figure 7. Typical current consumption vs. temperature in Stop mode

In stop mode, wakeup time depends on the voltage regulator and the Flash memory wakeup 
time. For example, if the voltage regulator is in run mode and the MCU is configured in stop 
mode, the wakeup time is about 13 µs. However when the voltage regulator and the Flash 
memory are configured in low power mode, the wakeup time increases to reach 110 µs (for 
more details about the wakeup time, please refer to the STM32F2xx datasheet).

Observation:

● Current consumption and wakeup time in stop mode depends on the voltage regulator 
configuration (run mode or low power mode) and Flash memory configuration (stop 
mode or deep power mode)

● A lower current consumption means a longer the wakeup time
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Standby mode consumption and wakeup time

Standby mode is based on the Cortex-Mx deep sleep mode, with the voltage regulator 
disabled. The 1.2 V domain is consequently powered off. The PLL, the HSI oscillator and 
the HSE oscillator are also switched off. SRAM and register contents are lost except for 
registers in the Backup domain and Standby circuitry.

For more information about current consumption values in Standby mode, refer to section 
“Supply current characteristics” in the STM32F20xx/21xx datasheet).

You can also measure this current consumption using the example included on the standard 
peripherals library (STM32F2xx_StdPeriph_Lib\Project\ 
STM32F2xx_StdPeriph_Examples\PWR\CurrentConsumption).

The Standby mode current consumption depends on the backup SRAM and RTC 
configuration, which is between 5.8 µA when both backup SRAM and RTC are enabled, and 
2.5 µA when both backup SRAM and RTC are disabled (for more details about the wakeup 
time, please refer to the STM32F2xx datasheet). 

Observation:

● Standby mode returns the lowest power consumption

● The wakeup time from Standby mode is the highest wakeup time. It is about 375 µs 
(refer to the section “Wakeup time from low-power mode” in the STM32F20xx/21xx 
datasheet)

● All I/O pins are high impedance except reset pad, and TAMPER pin if it is configured for 
tamper or calibration out, and the WKUP pin if it is enabled

● Wake up from standby mode means Inrush current will occur (refer to section 
Section 2.2.3: Voltage regulator configuration and impact on power consumption).

Conclusion:

The global wakeup time of the device can be viewed as the sum of the following:

● Wakeup time of the main voltage regulator (if it is switched off during the low-power 
mode)

● Stabilization time of the oscillator (if it is switched off during the low-power mode)

● Wakeup time of the Flash memory (if it is switched off during the low-power mode)

● Interrupt latency for the wake up event trigger

The results above shows the trade-off between consumption and wakeup time in the 
STM32F2. Generally, the lower the power consumption is, the longer the wakeup time. You 
should therefore try to find the best trade-off according to the application constraints.

2.2.3 Voltage regulator configuration and impact on power consumption

As described in Section 2.1.2 on page 5, the voltage regulator can be configured to be ON 
or OFF, depending on the package used (REGOFF and IRROFF pin availability) and the 
hardware environment (Vcap1 and Vcap2 pins configuration).
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Voltage regulator ON

When the voltage regulator is ON the hardware environment is set:

● Depending on the package, IRROFF and REGOFF pin (if available on the used 
package) are set to VSS, (see section “Voltage regulator” in the STM32F20xx/21xx 
datasheet)

● Vcap_1 and Vcap_2 pins are connected to GND through a 2.2uF ceramic capacitor

When the voltage regulator is ON, the Inrush current affects the dynamic power 
consumption at Power ON, and also and when the CPU wakes up from Standby mode.

In fact, the Inrush current is coming from the 2*2.2 µF Vcap capacitors, which are 
discharged when the voltage regulator is powered down (power off or Standby mode). 
These capacitors are charged at Power ON or when waking up from Standby mode. This 
results in the Inrush current reaching up to 200 mA (maximum) in a short time (about 30 µs).

To measure the Inrush current, place a current probe between one Vcap capacitor and the 
ground, then multiply the result by 2 (there are two Vcap capacitors drawing energy).

Figure 8 shows the Inrush current:

Figure 8. Inrush current div 2 (50mA/1DIV)

This parameter is described in the datasheet as Inrush current on voltage regulator (see the 
STM32F20xx/21xx datasheet Table 14 for more information).

Observation:

● The Inrush current does not affect the average current consumption of the application 
because the Inrush time is too short in relation to the global application time.

● When the voltage regulator is ON, all the equivalent power relative to 
ddp = (3.3 V - 1.2 V) is dissipated.
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Note: Important: The Inrush current of the STM32F2 is maximum 5.3 µC, and it is about 10 times 
less than USB compliance Inrush current which is specified at 5 V as 50 µC maximum.

Voltage regulator OFF

When the voltage regulator is OFF the hardware environment is set:

● Depending on the package IRROFF and/or REGOFF pin (if available on the used 
package) are set to VDD, (see section “Voltage regulator” in the STM32F20xx/21xx 
datasheet)

● Vcap_1 and Vcap_2 pins are connected to the external 1.2 V power supply and these 
pins must be decoupled with 2 * 100 nF ceramic capacitors

Observation:

● Standby mode is not allowed because 1.2V domain is controlled by the external power 
supply injected on Vcap pins.

● There is no Inrush current when the voltage regulator is bypassed.

● In this mode, there is no power dissipated by the voltage regulator.

● When bypassing the voltage regulator, for example we can save about 1/2 of the power 
which is wasted if the voltage regulator is active.
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3 STM32F2 low power firmware development

Software plays an important role in achieving the lowest current consumption. Code needs 
to be optimized, not just in terms of functionality but also with respect to energy efficiency. 
Software has perhaps never really been formally identified as an ‘energy drain’ and it needs 
to be. Every clock cycle and line of code consumes energy and this needs to be minimized 
to achieve the best energy efficiency.

3.1 Firmware tips and tricks

3.1.1 Common firmware configuration

ART configuration

The ART Accelerator™ is a memory accelerator which is optimized for STM32 ARM® 
Cortex™-Mx processors. It balances the inherent performance advantage of the ARM 
Cortex-Mx over Flash memory technologies, which normally requires the processor to wait 
for the Flash memory at higher operating frequencies. Thanks to the ART Accelerator™, the 
CPU can operate up to 120 MHz without wait states, thereby increasing the overall system 
speed and efficiency.

To release the full processor 150 DMIPS performance at this frequency, the accelerator 
implements an instruction prefetch queue and instruction/data, which enables program 
execution from Flash memory at up to 120 MHz without wait states.

To avoid extra power consumption it is recommended to configure the ART as follows:

/* Disable prefetch buffer */

    FLASH->ACR & = ~FLASH_ACR_PRFTEN;

/* Enable flash instruction cache */

    FLASH->ACR |= FLASH_ACR_ICEN;

/* Enable flash data cache */

    FLASH->ACR |= FLASH_ACR_DCEN;

The system performance can be adjusted to the current needs. This can be done either 
from start, according to performance estimations, or on-the-fly on a running system to adjust 
the performance to the current condition. In this way the prefetch can be enabled or disabled 
on-the-fly depending on user needs.

Disabling the prefetch buffer avoids extra Flash access that consumes 20 mA for 128-bit line 
fetching.
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System clock configuration

The power consumption in Run mode can be reduced by the following means:

● Slowing down the system clocks

● Gating the clocks to the APBx and AHBx peripherals when they are unused

● In Run mode, stopping the HCLKx and PCLKx for individual peripherals and memories 
at any time to reduce power consumption

● Estimating the clock speed of the peripheral buses during prototyping by calculating the 
needed bandwidth and testing the settings on the hardware. The adjustment of the 
clocks on-the-fly is not recommended as all clock settings for modules on the bus need 
to be recalculated.

● Not over clocking the CPU if this is not needed on the application

● Using the STM32F2xx_Clock_Configuration.xls tool in expert mode. When it is used in 
wizard mode, is not optimized for current consumption. 

● When the STM32F2xx_Clock_Configuration.xls tool is used in expert mode to generate 
system and peripherals clocks, take care to choose the correct clock configuration and 
to set the prescalers to the max. value on the associated PLLs of the peripherals that 
are not used (see Figure 9). 

For example: Using the STM32F2xx_Clock_Configuration.xls tool to configure the 
system clock of the application. In the user application, the following peripherals are not 
used: USB OTG FS, RNG, SDIO, I2S and all those clocked by PCLK1. The application 
only requires PCLK2 clocked at 60 MHz.

Figure 9. Example of optimized clock configuration

To summarize the example of optimizing the system clock:

● Set the system clock to the value needed in your application (60MHz in this 
application). This clock value can be achieved with different combinations of prescalers, 
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but the best way is to set SYSCLK to 60 MHz and the AHB prescaler to 1 as shown in 
Figure 9.

● Disable I2S clock, because it is not needed in the application

● Set PLL_Q prescaler to its maximum value, because USB OTG FS, RNG, SDIO are 
not used on this application

● Set APB1 prescaler to its maximum value because all PCLK1 peripherals are not used 
in this application

I/O configuration

After a reset, all STM32F2 pins are configured as inputs except some JTAG pins such as 
PA15 JTDI with pull-up, PA14 JTCK with pull-down and PA13 JTMS with pull-up. This has an 
impact on the power consumption of the device in the different power save modes because 
in input mode I/O pins are very sensible to external noise. 

To set the device in the lowest possible power mode, all pins should be configured as analog 
input (AIN), because in analog configuration the Schmitt trigger input is deactivated, 
providing zero consumption for each I/O pin.

We recommend configuring the I/Os as follows:

● At the startup of the application: 

– Enable all GPIO clocks

– Configure all I/Os in analog input mode

– Disable all GPIO clocks

● In the main application:

– Enable the required GPIO clock

– Configure the required I/Os on the application

● I/O configuration trick:

– If the user application just needs the I/Os to configure it as a peripheral alternate 
function in order to output or input signals (no read or write from/to GPIO 
registers), we recommend disabling the associated GPIO clock of the used I/Os 
after configuration. In this case I/O signals are still available and we optimize the 
GPIO current consumption by disabling its clock.

● I/O toggling frequency:

– When configuring the I/O, pay specific attention to the I/O speed value configured 
in OSPEEDR (2 MHz, 10 MHz, 25 MHz, 50 MHz and 100 MHz). Current 
consumption is as high as the I/O toggling frequency, so, to optimize current 
consumption, OSPEEDR should be configured with the lowest possible value.

         

Table 2. Example of I/O toggling frequency current consumption versus I/O load 
(VDD=3.3 V, I/O speed= 50 MHz) 

I/O toggling 
fequency/load

30 MHz  15 MHz 3.75 MHz 1.85 MHz

Pin disconnected
(pad cut)(1) 2.17 mA 1.55 mA 0.98 mA 0.7 mA

CS
(2) 2.93 mA 2.1 mA 1.1 mA 0.77 mA

10 pF + CS 3.97 mA 2.73 mA 1.23 mA 0.83 mA
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Table 2 shows the current consumption of a pin (such as the MCO or SPI SCK pin) that 
continuously switches at a specific frequency.

3.1.2 Special firmware configuration

ADC application

● The ADC can be also a source of current draw during the Stop mode, unless it is 
disabled before entering it. To disable it, write the ADON bit in the ADC_CR2 register to 
0.

● In run mode, ADC can be configured in power-down mode by clearing the ADON bit. In 
this mode the ADC consumes almost no power (only a few µA).

● In the application controlling the battery threshold through ADC_IN18 input channel, 
when setting VBATE bit in ADC_CCR register in run mode, there is an extra current 
consumption seen in Vbat pin. As a consequence, this may impact the battery life time. 
In fact, as the VBAT voltage could be higher than VDDA, to ensure the correct 
operation of the ADC, the VBAT pin is internally connected to a bridge divider by 2. This 
bridge is automatically enabled when VBATE is set, to connect VBAT/2 to the 
ADC1_IN18 input channel. To prevent any unwanted consumption on the battery, we 
recommend enabling the bridge divider only when needed, for ADC conversion.

DAC application

● The DAC can be also a source of current draw during the Stop mode, unless it is 
disabled before entering it. To disable it, write the ENx bit in the DAC_CR register to 0

● Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is 
automatically connected to the analog converter output (DAC_OUTx). In order to avoid 
parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN).

RTC application

To clock the RTC registers, a programmable prescaler is split into 2 prescalers a 7-bit 
asynchronous prescaler and a 13-bit synchronous prescaler.

When both prescalers are used, we recommend configuring the asynchronous prescaler to 
a high value to minimize consumption.

Peripherals low power mode

There are independent low power modes for certain peripherals like the USB, Ethernet, 
bxCAN. When the CPU is in run mode, these peripherals can enter low power mode 

33 pF + CS 4.89 mA 3.7 mA 1.52 mA 0.96 mA

47 pF + CS 5.85 mA 4.14 mA 1.67 mA 1.03 mA

1. The pin is externally removed from the LQFP176 package to avoid the pad capacitance.

2. CS: pad, board and PCB layout equivalent capacitance.

Table 2. Example of I/O toggling frequency current consumption versus I/O load 
(VDD=3.3 V, I/O speed= 50 MHz)  (continued)

I/O toggling 
fequency/load

30 MHz  15 MHz 3.75 MHz 1.85 MHz
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independently and then wake up automatically when needed. For more information, refer to 
the STM32F2xx reference manual (RM0033).

MCO pin usage

The outputting clock on MCO pin is one of the important sources of over current 
consumption (same phenomenon as I/O toggling frequency), and developers should be 
aware that MCO pin toggling at high frequency will impact the total current consumption of 
the application.

However, the outputting clock on MCO pin remains an important feature for debug purpose.

Memory software remap

To boost the performance, the system configuration controller (SYSCFG) can be configured 
to remap the memory accessible in the code area. In remap mode the CPU can access the 
external memory via the ICode bus instead of the system bus, which increases the global 
application performance.

Developers should be aware that increasing performance by configuring the software remap 
will increase the current draw.

3.1.3 Code optimization

As a development process proceeds, code size naturally increases and optimizing it for 
energy efficiency becomes a much harder and time-consuming task. 

Software developers must ensure the best firmware size and speed optimization during 
development process in order to achieve the lowest current consumption.

Optimizing firmware for current consumption can be achieved via:

● Firmware development, which should be optimized with only the required instructions. 
We recommend making direct read/write to/from registers instead of using firmware 
which contains many loops and instructions that can be a source of extra current 
consumption.

● Using toolchain optimization options to save more energy.

3.2 STM32F2 example of current consumption optimization
This section is based on practical implementation of the low power firmware tips and tricks 
described above.

3.2.1 Test environment

This section gives details on the hardware, software and tools environment used to measure 
the STM32F2 current consumption.

Application requirements

Firstly we develop an application based on a set of application requirements defined for the 
purpose of giving a practical example. Then in a second step we optimize the application to 
achieve the lowest current consumption while still respecting the given requirements.
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The application requirements are:

● SPI communication between two STM32F2 MCUs

● SPI must be configured in 16-bit data format

● SPI1 must be used

● Each 20 ms, 1024 bytes are transferred from SPI1 slave to SPI1 master

● Output clock available on MCO2 pin for debug purpose

The following figure summarizes the application requirements:

Figure 10. Application architecture and requirements

Note: The buffer size referred to in Figure 10, is 1022 bytes. In this case the total number of data 
bytes transferred from slave to master is 1024 bytes = 2 bytes (buffer size) + 1022 bytes 
(useful data).

Requirements analysis

In this application we have to transfer 1024 bytes every 20 ms, in this case the SPI baudrate 
needs to be higher than (1024 * 8)/20 ms = 410 Kbit/s.

We then analyze the possible baudrates in the range between 468 Kbit/s and 7.5 Mbit/s and 
then consider how this can impact  the current consumption.

● At 468 Kbit/s, the 1024 bytes will be transferred within 17.5 ms

● At 7.5 Mbit/s, the 1024 bytes will be transferred within 1 ms

Figure 11 explains the SPI transfer in more detail.

SPI1_Master SPI1_Slave

SPI1 configuration SPI1 configuration

SPI1 sends one dummy 
data to slave

SPI1 sends the buffer size to
be transmitted to the master

SPI1 receives the buffer size 
from the slave

SPI1 sends a full buffer of 
dummy data to the slave

SPI1 sends the buffer of useful 
data to the master

SPI1 receives buffer of useful
data from the slave

This process

Must
be done
by polling

is repeated
every 20 ms
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Figure 11. SPI transfer diagram

Hardware environment

● The first board (SPI1 Master) is a board with an STM32F217IGH6 MCU and only 
decoupling capacitors, boot pins and JTAG interface mounted on the board. 

● The second board (SPI1 Slave) is identical to the first board.

● HSE crystal oscillator = 25 MHz

Note: All current consumption results described on the rest of this application note are measured 
using a generic board containing only the MCU, Boot pins (VDD,VSS) and decoupling 
capacitors. Please refer to Appendix A: Schematics on page 36.

The hardware connection between the two STM32F2 board is described in Figure 12:
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Figure 12. SPI hardware connection between two boards

Note: 1 The connection between the pins should use a short wires and a common ground.

2 The two boards are supplied by an external power supply fixed at 3.3 V and the GND of the 
two power supply outputs must be linked together.

3 Temperature: 25°C

Software toolchain

All tests and results presented on the following sections are based on the EWARv6.21 
toolchain.

Note: Using other toolchains may result other current consumption values.

Firmware deliverables 

A firmware package is associated with this application note, which contains three projects: 

● “SPI_MASTER_NonOptimized“: which is the non optimized project developed without 
implementing the low power tips and tricks. This project is used as the baseline for 
optimizing the current consumption, making investigations and reaching conclusions 
from the practical tests and results.

● “SPI_MASTER_Optimized“: which is the optimized project, meeting the same 
application requirements as the first firmware project, but with the lowest possible 
current consumption. 

● “SPI_SLAVE“: which is the project running on the second STM32F2 board and 
communicating with the SPI1 on the first STM32F2 board.

In the rest of this application note, use on the “SPI_MASTER_NonOptimized“ project as a 
starting point and modify it step by step to see how this impacts the current consumption.

3.2.2 SPI_MASTER_NonOptimized firmware architecture

As we are going to use the “SPI_MASTER_NonOptimized“ project as a base for optimizing 
the STM32F2 current consumption, we need to understand the firmware architecture which 
must conform to the application requirements described in Section 3.2.1 on page 21.

MS19826V1

SPI master device SPI slave device

SCK
MOSI
MISO

GNDGND

Board A Board B
A

DDV
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The “SPI_MASTER_NonOptimized” folder contains all the subdirectories and files that 
make up the core of the application example:

● stm32f2xx_conf.h: contains the configuration includes of peripherals,

● stm32f2xx_it.h: contains the headers of the interrupt handlers,

● main.c: contains the main program body

● stm32f2xx_it.c: contains the interrupt service routines, in this case it contains the 
SysTick interrupt which is generated every 20 ms to trigger the SPI communication.

● system_stm32f2xx.c: contains the system clock configuration for STM32F2xx.

● EWARM: contains the project for the EWARM toolchain.

Figure 13 describes the firmware architecture in more detail:

Figure 13. SPI_MASTER_NonOptimized firmware architecture

Note: In main.c file there are two defines: 

#define MAIN_POLLING: This define must be used when optimizing the firmware from step 
1 to step 7 and at step 9 (refer to Section 3.2.3).

#define MAIN_DMA: This define must be used when optimizing the firmware at step 8 (refer 
to Section 3.2.3).
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3.2.3 Practical example of current optimization

This section describes the sequence and the step by step modifications to apply to the 
“SPI_MASTER_NonOptimized“ project in order to achieve the lowest current consumption.

Note: Important: In all the following steps, unless explicitly mentioned, the EWARM optimization 
is set to “none”.

Note: In all the following steps, always reset board B (SPI slave) before running the firmware of 
board A (SPI master).

Step1:

● Be sure that the SPI pin connections as well as the external power supply of the two 
boards is correctly done as described in Figure 12.

● Load the “SPI_SLAVE“ project on board B.

● Comment (//#define MAIN_DMA) and uncomment (#define MAIN_POLLING) in the 
main.c file of the “SPI_MASTER_NonOptimized” project then load the code in board A.

You can experiment with changing the SPI baudrate and see the current consumption 
results.

Note: You can find the system clock configuration in the system_stm32f2xx.c file: HCLK = 60 MHz, 
APB2 = 60 MHz and APB1= 30 MHz, system running from HSE = 25 MHz and the ART is 
disabled.

         

Observation:

In this case, the best configuration in terms of current consumption is to set the SPI 
prescaler to 8.

Step 2:

As described on Section 2.2.2, enabling the ART reduces the current consumption, so now 
let’s enable the ART and repeat the same tests as in step 1.

To enable the ART please use the following code:

/* Enable prefetch buffer */ FLASH->ACR |= FLASH_ACR_PRFTEN;

/* Enable flash instruction cache */ FLASH->ACR |= FLASH_ACR_ICEN;

/* Enable flash data cache */ FLASH->ACR |= FLASH_ACR_DCEN;

Please add this code in the “system_stm32f2xx.c” file in the “SetSysClock“ function after the 
following line: 

FLASH->ACR = FLASH_ACR_LATENCY_1WS;

Table 3. Step1 current consumption results

SPI prescaler (baudrate)(1)

1. SPI1 is clocked by APB2 = 60 MHz.

Current consumption

Pres = 8 (baudrate 60/8 = 7.5 Mbit/s) 28.7 mA

Pres = 16 (baudrate 60/16 = 3.75 Mbit/s) 29 mA

Pres = 64 (baudrate 60/64 = 937 Kbit/s) 30.5 mA

Pres = 128 (baudrate 60/128 = 468 Kbit/s) 30.6 mA
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Observations:

● Enabling the ART reduces the total current consumption by about half

● Decreasing the SPI baudrate slightly decreases the current consumption.

● In this case, the best configuration in terms of current consumption is to set SPI 
prescaler to 128.

Step 3:

In the application requirements, SPI1 is used with a maximum baudrate of 7.5 Mbit/s. In this 
step, we optimize the system clock as described on System clock configuration on page 18.

To optimize the STM32F2 system clock, the “STM32F2xx_Clock_Configuration.xls” tool is 
used in expert mode (refer to Section 3.1.1).

Figure 14. System clock optimization

Table 4. Step2 current consumption results

SPI prescaler (baudrate) Current consumption

Pres = 8 (baudrate 60/8 = 7.5 Mbit/s) 15.3 mA

Pres = 16 (baudrate 60/16 = 3.75 Mbit/s) 15.2 mA

Pres = 64 (baudrate 60/64 = 937 Kbit/s) 14.9 mA

Pres = 128 (baudrate 60/128 = 468 Kbit/s) 14.6 mA
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Using the xls tool in expert mode, perform the following steps to optimize the system clock in 
this example:

● Enable the ART

● Disable the I2S clock because it is not used in the application

● Set PLL_N to the minimum possible value taking into account the PLL_P value needed 
to meet the system clock requirements

● Set PLL_Q to its maximum value in order to output the lowest possible USB, SDIO and 
RNG clocks, because these peripherals are not used in this application

● Set the AHB prescaler to 1 in order to have SYSCLK= HCLK, in this case we don’t over 
clock the CPU

● Set the APB1 prescaler to its maximum value, in order to output the lowest possible 
PCLK1 clock, because APB1 peripherals are not used in this application,

● Set the APB2 prescaler to generate the required clock frequency for the PCLK2 
peripherals.

Note: 1 In this example, we have chosen a system clock frequency of 30 MHz, although it could be 
optimized more and reduced to 15 MHz.

2 The APB2 prescaler factor is fixed at 2, outputting 15 MHz to the PCLK2 peripherals. In this 
case SPI1 is clocked at 15 MHz and uses the minimum SPI prescaler factor (factor 2) to 
achieve the maximum SPI baudrate of 7.5Mbit/s specified by the application requirements.

         

Observation:

● Optimizing the system clock significantly decreases current consumption (by about 
6 mA)

● Decreasing the SPI baudrate slightly decreases current consumption.

● In this case, the best configuration in terms of current consumption is to set the SPI 
prescaler to 32.

Step 4

As described on ART configuration on page 17, disabling the prefetch decreases the current 
consumption, in this step we examine the impact of disabling the prefetch.

Please use the following code:

/* Disable the prefetch buffer */ FLASH->ACR &=~FLASH_ACR_PRFTEN;

Please add this code in the “system_stm32f2xx.c” file in the “SetSysClock“ function after the 
following line:

FLASH->ACR = FLASH_ACR_PRFTEN |FLASH_ACR_ICEN |FLASH_ACR_DCEN 
|FLASH_ACR_LATENCY_0WS;

Table 5. Step3 current consumption results

SPI prescaler (baudrate) Current consumption

Pres = 2 (baudrate 15/2 = 7.5 Mbit/s) 9.3 mA

Pres = 4 (baudrate 15/4 = 3.75 Mbit/s) 9.3 mA

Pres = 16 (baudrate 15/16 = 937 Kbit/s) 8.6 mA

Pres = 32 (baudrate 15/32 = 468 Kbit/s) 8.4 mA
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Observation:

● Disabling the prefetch slightly decreases the current consumption, 

● Decreasing the SPI baudrate slightly decreases the current consumption,

● In this case, the best configuration in term of current consumption is to set SPI 
prescaler to 32.

Step 5

As described in MCO pin usage on page 21, outputting a clock on the MCO pin may 
increase the current consumption due to the I/O toggling frequency. In this step we examine 
the impact of disabling the MCO pin which outputs the system clock divided by 2 (equal to 
15 MHz.).

Please remove the following code in the main.c file:

/* Output the system clock Div2 for debug purposes -------------------------*/

RCC_MCO2Config(RCC_MCO2Source_SYSCLK, RCC_MCO2Div_2);

/* Configure PC9 as MCO pin */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;

GPIO_Init(GPIOC, &GPIO_InitStructure);

/* Enable PC9 alternate function */

GPIO_PinAFConfig(GPIOC,GPIO_PinSource9,GPIO_AF_MCO);

/* Enable the GPIO C clock*/

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOC, ENABLE);

         

Observation:

● Disabling the MCO output clock decreases the current consumption (about 1.2 mA) 

● Decreasing the SPI baudrate slightly decreases current consumption

● In this case, the best configuration in term of current consumption is to set SPI 
prescaler to 32

Table 6. Step4 current consumption results

SPI prescaler (baudrate) Current consumption

Pres = 2 (baudrate 15/2 = 7.5 Mbit/s) 8.7 mA

Pres = 4 (baudrate 15/4 = 3.75 Mbit/s) 8.7 mA

Pres = 16 (baudrate 15/16 = 937 Kbit/s) 8.3 mA

Pres = 32 (baudrate 15/32 = 468 Kbit/s) 8.3 mA

Table 7. Step5 current consumption results

SPI prescaler (baudrate) Current consumption

Pres = 2 (baudrate 15/2 = 7.5 Mbit/s) 7.1 mA

Pres = 4 (baudrate 15/4 = 3.75 Mbit/s) 7 mA

Pres = 16 (baudrate 15/16 = 937 Kbit/s) 7 mA

Pres = 32 (baudrate 15/32 = 468 Kbit/s) 6.9 mA
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Step 6

To optimize the GPIO current consumption, you should configure GPIOs as described in I/O 
configuration on page 19.

To implement these recommendations, please follow these steps:

/* Enable all GPIO clocks */

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA|RCC_AHB1Periph_GPIOB|RCC_AHB1Periph_GPIO
C|RCC_AHB1Periph_GPIOD|\RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOF|RCC_AHB1Periph_GPI
OG|RCC_AHB1Periph_GPIOH|RCC_AHB1Periph_GPIOI, ENABLE);

Add this code source in “void RCC_Configuration(void)” which you can find in the “main.c” 
file as shown in Figure 15.

/* Configure all GPIOs in AIN mode */

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_All;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;

GPIO_Init(GPIOA, &GPIO_InitStructure);

GPIO_Init(GPIOB, &GPIO_InitStructure);

GPIO_Init(GPIOC, &GPIO_InitStructure);

GPIO_Init(GPIOD, &GPIO_InitStructure);

GPIO_Init(GPIOE, &GPIO_InitStructure);

GPIO_Init(GPIOF, &GPIO_InitStructure);

GPIO_Init(GPIOG, &GPIO_InitStructure);

GPIO_Init(GPIOH, &GPIO_InitStructure);

GPIO_Init(GPIOI, &GPIO_InitStructure);

Add this code source in “void RCC_Configuration(void)” which you can find in the “main.c” 
file as shown in Figure 15.

/* Disable all GPIO clock */

RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA|RCC_AHB1Periph_GPIOB|RCC_AHB1Periph_GPIO
C|RCC_AHB1Periph_GPIOD|\RCC_AHB1Periph_GPIOE|RCC_AHB1Periph_GPIOF|RCC_AHB1Periph_GPI
OG|RCC_AHB1Periph_GPIOH|RCC_AHB1Periph_GPIOI, DISABLE);

Add this code source in “void RCC_Configuration(void)” which you can find in the “main.c” 
file as shown in Figure 15.
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Figure 15. Code source for GPIO configuration

After configuring the GPIO, please follow these steps:

● In “main.c“, “void GPIO_Configuration(void)“ function, add this code at the beginning of 
this function:

/* Enable the used GPIO clocks */ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, 
ENABLE);

● In “main.c“, “void GPIO_Configuration(void)“ function, replace 

“GPIO_Speed_100MHz“ by “GPIO_Speed_2MHz“.

● In “main.c“, “void GPIO_Configuration(void)“ function, add this code at the end of this 
function:

/* Disable GPIO clocks */ RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, DISABLE);

         

Table 8. Step6 current consumption results

SPI prescaler (baudrate) Current consumption

Pres = 2 (baudrate 15/2 = 7.5 Mbit/s) 7 mA

Pres = 4 (baudrate 15/4 = 3.75 Mbit/s) 6.9 mA

Pres = 16 (baudrate 15/16 = 937 Kbit/s) 6.9 mA

Pres = 32 (baudrate 15/32 = 468 Kbit/s) 6.8 mA
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Observation:

● Configuring all GPIOs in AIN mode prevents any noise being injected on the I/Os and 
may increase the current consumption

● Configuring the GPIO speed to a low value (2 MHz), decreases the current 
consumption of the toggling pins,

● In this case, the best configuration in term of current consumption is to set SPI 
prescaler to 32.

Step 7

To further optimize the current consumption of the application we can put the CPU in sleep 
mode after receiving the 1022 useful data bytes.

To do this, add the following code after the “for” loop in which we receive the 1022 bytes:

add: /* Enter CPU to sleep mode */ __WFI();

The current consumption values are summarized on the following table:

Table 9. Step7 current consumption results

Observation:

● As soon as the CPU has received all the 1022 data bytes from the slave, it enters sleep 
mode in order to save energy.

● When the SPI baudrate is set to 7.5 Mbit/s, we obtain the lowest current consumption 
because 1024 bytes transferred at 7.5 Mbit/s take about 1 ms and for all the remaining 
time (20 ms - 1 ms = 19 ms) there is no SPI communication and CPU enters sleep 
mode.

● When the SPI baudrate is set to 468 Kbit/s, the 1024 bytes will take about 17 ms to be 
transferred; that's why the CPU stays in sleep mode only for (20 ms - 17 ms) or 3 ms.

Step 8

To further optimize the current consumption of the application, we can configure CPU to 
enter sleep mode while DMA transferring data.

This is already implemented in the main.c file, please comment (//#define MAIN_POLLING) 
and uncomment (#define MAIN_DMA).

         

SPI prescaler (baudrate) Current consumption

Pres = 2 (baudrate 15/2 = 7.5 Mbit/s) 4.8 mA

Pres = 4 (baudrate 15/4 = 3.75 Mbit/s) 5.4 mA

Pres = 16 (baudrate 15/16 = 937 Kbit/s) 5.6 mA

Pres = 32 (baudrate 15/32 = 468 Kbit/s) 6.8 mA

Table 10. Step8 current consumption results

SPI prescaler (baudrate) Current consumption

Pres = 2 (baudrate 15/2 = 7.5 Mbit/s) 5.2 mA

Pres = 4 (baudrate 15/4 = 3.75 Mbit/s) 5.3 mA
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Observation:

● Configuring the CPU to enter sleep mode while the DMA continue to transfer data is a 
very effective way of optimizing current consumption and freeing the CPU for other 
tasks.

● In this step the CPU enters sleep mode as soon as the DMA is properly configured, 
and the DMA handles the read/write operations from/to the SPI data register.

● In this case using the CPU with sleep mode as shown in step 8 appears to be more 
efficient than using DMA with the CPU in sleep mode. This is due to the DMA clock 
consumption which is added to the total consumption of the application.

Step 9

Optimizing the firmware by making direct read/write to/from registers as well as using the 
compiler optimization can reduce the current consumption of the application, however this 
optimization method depends on the firmware itself. That’s why we recommend to use this 
method as the last step.

In this step we will change the optimization level of the compiler and see the impact on the 
current consumption measurements.

All the measure results presented on the following table are done with Pres = 2(baudrate 15/2 
= 7.5Mbit/s).

Table 11. Step9 current consumption results

Observation: 

In this case, using the compiler optimization does not impact the current consumption of the 
application because at this step, this example is already optimized and is reduced to only a 
few instructions.

Step 10

As described in Section 2.2.3, configuring the voltage regulator in bypass mode can be 
used to save more energy. In this step we examine the impact of bypassing the voltage 
regulator versus the total consumed energy.

To measure the current consumption of the application in this step: 

● Software conditions are the same as Step 7 with SPI baudrate set at 7.5 Mbit/s which 
gives the lowest current consumption of 4.8 mA (refer to Table 9).

● Hardware conditions must be modified as described on Section 2.2.3 (voltage regulator 
OFF).

Pres = 16 (baudrate 15/16 = 937 Kbit/s) 5.5 mA

Pres = 32 (baudrate 15/32 = 468 Kbit/s) 5.7 mA

 Compiler optimization

Method used High for size High for speed High balanced

Polling 4.8 mA 4.8 mA 4.8 mA

Table 10. Step8 current consumption results

SPI prescaler (baudrate) Current consumption
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The measurement results in this step are:

● Current consumption on Vcap pins is 3.16 mA

● Current consumption on the VDD pins is 1.45 mA

Observation

● The total energy consumed when bypassing the voltage regulator is equal to: 
3.16 mA * 1.2V + 1.45mA * 3.3V = 8.57mW.

● The total energy consumed without bypassing the voltage regulator (same conditions 
as Step 7) is equal to: 4.8mA * 3.3V = 15.84 mW.

Summary of results

After applying the firmware tips and tricks for low power applications and measuring the 
current consumption in many different configurations, we conclude that in this example we 
can decrease the total energy consumed in the application from about 100 mW (30.6 mA 
*3.3V) to 8.5 mW which demonstrates the extensive low power capabilities of the STM32F2 
microcontroller.

         

Table 12. Summary of the energy saving steps

SPI baudrate

Optimization   steps 7.5 Mbit/s 3.75 Mbit/s 937 Kbit/s 468 Kbit/s

Step 1: Initial project 94.71 mW 95.7 mW 100.65 mW 100.98 mW

Step 2: ART ON 50.49 mW 50.16 mW 49.17 mW 48.18 mW

Step 3: Optimized system clock 30.69 mW 30.69 mW 28.38 mW 27.72 mW

Step 4: Prefetch OFF 28.71 mW 28.71 mW 27.39 mW 27.39 mW

Step 5: MCO disabled 23.43 mW 23.1 mW 23.1 mW 22.77 mW

Step 6: Optimized GPIO configuration 23.1 mW 22.77 mW 22.77mW 22.44 mW

Step 7: Polling + CPU in sleep mode 15.84 mW 17.82 mW 18.48 mW 22.44 mW

Step 8: DMA + CPU in sleep mode 17.16 mW 17.49 mW 18.15 mW 18.81 mW

Step 9: Compiler optimization(1)

1. Compiler optimization depends on the application code. Refer to the description of Step 9 above. 

15.84 mW

Step 10: Voltage regulator bypassed(2)

2. This step is applied only for 7.5 Mbps SPI baudrate after step 7 since it is the lowest power consumption.

8.57 mW
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4 Conclusion

This application note covers hardware and software parameters which influence on the 
current consumption of the application.

In Section 1, we have presented a theoretical explanation highlighting the parameters which 
impact the current consumption of any microcontroller-based application. Section 2, then 
described the low power design of STM32F2 from a hardware point of view, and Section 3 
has shown how to optimize a real microcontroller application in terms of current 
consumption, in this section, an SPI application running on the STM32F2 consuming 
95 mW is optimized step-by-step to lower the total consumed energy to only 8.5 mW.

In applications based on the STM32F2xx family that require low power current consumption, 
developers should methodically apply all these hardware and software tips and tricks to get 
the lowest possible current consumption in their specific design project.
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Appendix A Schematics

Figure 16. Generic board schematics
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