
31/07/2018 200990[PostContent].html

file:///C:/Work/STM/data/1-Faical/200990[PostContent].html 1/2

Hi, I've got a weird problem with I'd like some advice on. I've configured an STM32F334 as a I2C Slave, and am using Sequential IT driven
operation with variable length packets (e.g. first byte received is length byte, followed by data packet of variable length)

Everything works exactly as planned - EXCEPT in a certain situation where the receive ISR was taking too long, and subsequently the
HAL_I2C_EnableListen_IT() command was not getting called in time for the next 'read' request coming on the I2C line from the Master.

Subsequently HAL_I2C_AddrCallback() was not called, and the packet was missed...to be expected.

What was not expected was that this would cause the STM to pull the SDA line LOW, and not release it. The STM code continued to operate as if
nothing had gone wrong, except now the I2C bus was blocked.

* No error states reported by HAL_I2C_GetError()

* HAL_I2C_GetState() was reporting HAL_I2C_STATE_LISTEN as expected.

* HAL_I2C_ErrorCallback() was not called

I tried sending 9+ clock pulses from the master to release the bus, but to no avail.

I've changed my code so the ISR finishes much more quickly (and everything works normally) - but I'm worried as to how this could get the I2C to
lock up so horribly? Especially with no errors being reported.

void HAL_I2C_AddrCallback(I2C_HandleTypeDef *hi2c, uint8_t TransferDirection, uint16_t AddrMatchCode)
 {

 TRACE_PA1_HI;
 if(AddrMatchCode == 222)

 {
 gTransferDirection = TransferDirection;

 if (TransferDirection == I2C_DIRECTION_TRANSMIT)

 {
 /* Master is sending command and data payload*/

 gI2CReceiveIndex = 0;
 gI2CPayloadSizeReceived = 0;

 HAL_I2C_Slave_Sequential_Receive_IT(&hi2c1, &gI2CPayloadSize, 1, I2C_FIRST_FRAME); // setup to receive payload size first
 }

 else
 {

 switch (gI2CLastReadCommand)
 {

 case HRD_READ_TEMPERATURES_16BIT:
 gRxBuffer[0] = HI(gLedTemp);

 gRxBuffer[1] = LO(gLedTemp);
 HAL_I2C_Slave_Sequential_Transmit_IT(&hi2c1, (uint8_t *)gRxBuffer,2, I2C_FIRST_AND_LAST_FRAME);

 break;
 }

 }
 }

 }

// After listen is complete, re-enable listen ISR

 void HAL_I2C_ListenCpltCallback(I2C_HandleTypeDef *hi2c)
 {

 HAL_I2C_EnableListen_IT(&hi2c1);
 }

void HAL_I2C_SlaveRxCpltCallback(I2C_HandleTypeDef *hi2c)

 {
 if (gI2CPayloadSizeReceived == 0)

 {
 gI2CPayloadSizeReceived = 1;

 HAL_I2C_Slave_Sequential_Receive_IT(&hi2c1, (uint8_t *)gRxBuffer, gI2CPayloadSize, I2C_LAST_FRAME);
 return;

 }
 TRACE_PB0_HI;

 gI2CPayloadSizeReceived = 0;

 if (gTransferDirection == I2C_DIRECTION_TRANSMIT)
 {

 switch(gRxBuffer[0])
 {

 case HRD_SETUP_READ_CMD:
 gI2CLastReadCommand = gRxBuffer[1]; // save read command byte

 break;

 case HRD_COMMAND_WHICH_TAKES_TOO_LONG:
 doSomethingWhichTakes50us(); // this causes SDA to be pulled LOW and can't recover

 break;
 }

 }
 }??

This timing snapshot shows the issue:

Point A: This is a trace on HAL_I2C_AddrCallback()

Point B: This is a trace on doSomethingWhichTakes50us() which causes the next I2C transmission to be missed

Point C: This is a trace on HAL_I2C_ListenCpltCallback() which calls HAL_I2C_EnableListen_IT() fractionally too late

31/07/2018 200990[PostContent].html

file:///C:/Work/STM/data/1-Faical/200990[PostContent].html 2/2

Does anyone have any ideas on why this is happening, and how to get out of a sticky situation like this? How can I detect that this has even happened
on the STM?

I'm using STM32Cube FW_F3 V1.9.0

