
Question: LWIP/ V6.5.0. STMH32H735_DISCO (https://github.com/stm32-hotspot/STM32H7-LwIP-

Examples) .Rx_PoolSection. (former .RxArraySection) seems not to be guarded by the MPU against

cache coherency issues. Is this the right way?

I have compared 2 STMH32H735_DISCO_Eth examples, one built under cube IDE V6.2.1 and a more

recent one built with IDE V6.5.0. (thanks to Pavel A. for providing the reference to the new examples

on GIT).

The V6.5.0. example moved the Rx_PoolSection/RxArraySection from AHB D2 RAM to AXI D1 RAM.

The MPU configuration in the example seems not to protect the Rx_PoolSection/RxArraySection area

from cache coherency problems any more. Can such a protection be omitted and if so why?

Analyzing the “OLD” V6.2.1. STMH32H735_DISCO_Eth example:

Ethernetif.c: (LINE 90)

#elif defined (__GNUC__) /* GNU Compiler */

ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]

__attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */

ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]

__attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */
uint8_t Rx_Buff[ETH_RX_DESC_CNT][ETH_RX_BUFFER_SIZE]

__attribute__((section(".RxArraySection"))); /* Ethernet Receive Buffers */

#endif

This combined with STM32H735IGKX.FLASH.ld (line 164)

 .lwip_sec (NOLOAD) : {

 . = ABSOLUTE(0x30000000);

 *(.RxDecripSection)

 . = ABSOLUTE(0x30000060);
 *(.TxDecripSection)

 . = ABSOLUTE(0x30000200);

 *(.RxArraySection)

 } >RAM_D2

Leads to:

.RxArraySection in RAM_D2 @0x30000200.

The section is guarded by the MPU settings:

And, given the priority of the MPU region settings (last ref prevails), we end up

with Region 0;

Level 1: TEX 1, C=0, B=0, which makes the region where the Rx buffers sit a

normally ordered, non cacheable area. This is (IMHO) what it should be as the

STM32H7 ETH DMA writes its data telegrams received from the PHY into these buffers

from where they are further processed by LWIP.

Analyzing the “NEW” V6.5.0. STMH32H735_DISCO_Eth example:

The V6.5.0. STMH32H735_DISCO_Eth (https://github.com/stm32-hotspot/STM32H7-LwIP-Examples) is

different and I did not find a similar mechanism that protects these receive buffers against caching

related problems.

Ethernetif.c (line 109)

#elif defined (__GNUC__) /* GNU Compiler */

ETH_DMADescTypeDef DMARxDscrTab[ETH_RX_DESC_CNT]

__attribute__((section(".RxDecripSection"))); /* Ethernet Rx DMA Descriptors */
ETH_DMADescTypeDef DMATxDscrTab[ETH_TX_DESC_CNT]

__attribute__((section(".TxDecripSection"))); /* Ethernet Tx DMA Descriptors */

#endif

Ethernetif.c (line 144)

#elif defined (__GNUC__) /* GNU Compiler */
__attribute__((section(".Rx_PoolSection"))) extern u8_t

memp_memory_RX_POOL_base[];

#endif

STM32H735IGKX_FLASH.LD (line 137)

 /* Uninitialized data section */
 . = ALIGN(4);

 .bss :

 {

 /* This is used by the startup in order to initialize the .bss secion */

 _sbss = .; /* define a global symbol at bss start */
 __bss_start__ = _sbss;

 *(.bss)

 (.bss)

 *(COMMON)

 /* ETH_CODE: add placement of RX buffer. STM32H72x/H73x has small D2 RAM, so

we need to put it there.

 * (NOLOAD) attribute used for .bss section to avoid linker warning (.bss

initialized by startup code)
 */

 . = ALIGN(32);

 *(.Rx_PoolSection)

 . = ALIGN(4);
 _ebss = .; /* define a global symbol at bss end */

 __bss_end__ = _ebss;

 } >RAM_D1

There is an .Rx_PoolSection that ends up in RAM_D1:

STM32H735_Disco_Eth.map (line 26999)

According to RM0468 Table 6. “Memory map and default device memory area attributes”

This is AXI SRAM. This makes sense as DMA ETH fills these buffers.

However, and this is my point: I do not see how MPU protects this area from caching issues (or is this

not required):

The .IOC mpu configuration:

Region 0, as I understand it, blocks the memory space related to External RAM and External device

RAM. (SubRegion spec 0x87 excludes the lower 1.5GB and the top 0.5GB (code + SRAM + Peripheral,

vendor specific memory)). Hence the bottom 1.5GB and the top 0.5GB are available for use.

Region 1: protects 32 KB above 0x3000 0000, in the same sense as mentioned above.

Level 1: This is the same as in the first example, however the RX buffers have

moved to another area 0x24006d00 and are no longer located at 0x3000 0200 as in

the LWIP example mentioned in the first part of this post.

Region 2: Is there to protect the descriptors, related to this part. This part seems fine to me.

So in essence, if the DMA updates the receive buffers, I see no mechanism that prevents the MCU

from using its cache with possibly outdated data (dating from before the update by the DMA) instead

of what is in the AXI ram. Possibly I did overlook something?

