

TRAINING MANUAL

EMBEDDED SYSTEMS DESIGN AND IOT APPLICATIONS

USING CLOUD COMPUTING

Unit 10.1

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 3

Embedded System Programming

Time allocation: Week 10

Objectives

The aim of this module is to get immersed into embedded programming on a real hardware.

To complete the basic workflow, simple applications are developed, implemented, and

demonstrated in an Embedded System work environment. Experiment(s) in this module are

conducted using Real-Time OS (RTOS) to demonstrate some of the most common practical

applications.

Resources

 Desktop PC / Laptop

 Software development Tools

 Embedded Kit (ARM Cortex Series)

 Jumper Wires / Breadboard / LEDs, Switches

Topics to be covered:

1. Getting Started a Tutorial Project

2. ARM Cortex M4 I/O Programming

3. GPIO (General Purpose I/O) Programming and Interfacing

4. Reading Switches and Displaying the same on LEDs

5. Standard Application(s) Interfacing and Programming

6. Internet-of-Things (IOT) Application(s) Interfacing and Programming

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 4

Educating Technologies

Embedded System Setup

(STM32 µController)

Document: Datasheet (stm32l4s5) and Reference manual (stm32l4s5)

STM32 (ARM Cortex M4)

Starter Kit - Development

and Education Board

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 5

Getting started with embedded RTOS (freeRTOS)

What is an RTOS and Multitasking?

A RTOS is a real-time operating system which manages software and hardware resources on a

computing system and provides services to application software which are not possible with bare

metal.

A RTOS is basically a software component that rapidly switches between tasks, giving the impression

that multiple programs are being executed at the same time on a single processing core.

In actual fact the processing core can only execute one program at any one time, and what the RTOS

is actually doing is rapidly switching between individual programming threads (or Tasks) to give the

impression that multiple programs are executing simultaneously.

When switching between Tasks the RTOS has to choose the most appropriate task to load next. There

are several scheduling algorithms available. However, to provide a responsive system most RTOS use

a pre-emptive scheduling algorithm.

In a pre-emptive system each Task is given an individual priority value. The faster the required

response, the higher the priority level assigned. When working in pre-emptive mode, the task chosen

to execute is the highest priority task that is able to execute. This results in a highly responsive

system.

RTOS

Architecture

Examples:

 freetRTOS

 Keil RTX

 µC/OS

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 6

Educating Technologies

While selecting a RTOS, one of the most important considerations is what type of response is desired

– Is a hard real time response required? This means that there are precisely defined deadlines that, if

not met, will cause the system to fail. Alternatively, would a non-deterministic, soft real time response

be appropriate? In which case there are no guarantees as to when each task will complete.

The choice of RTOS can greatly affect the development of the design.

By selecting an appropriate RTOS the developer gains:

 A Task based design that enhances modularity, simplifies testing and encourages code reuse;

 An environment that makes it easier for engineering teams to develop together;

 Abstraction of timing behaviour from functional behaviour, which should result in smaller

code size and more efficient use of available resources.

Peripheral support, memory usage and real-time capability are key features that govern the suitability

of the RTOS. Using the wrong RTOS, particularly one that does not provide sufficient real time

capability, will severely compromise the design and viability of the final product.

The RTOS needs to be of high quality and easy to use. Developing embedded projects is difficult and

time consuming – the developer does not want to be struggling with RTOS related problems as well.

The RTOS must be a trusted component that the developer can rely on, supported by in-depth training

and good, responsive support.

What is FreeRTOS?

FreeRTOS is a class of RTOS that is designed to be small enough to run on a microcontroller (µC). A

microcontroller is a small and resource constrained processor that incorporates, on a single chip, the

processor itself, read only memory (ROM / Flash) to hold the program to be executed, and the random

access memory (RAM) needed by the programs it executes. Typically the program is executed from

the read only memory. One of the main attractions in freeRTOS is its free of cost licensing model.

Microcontrollers are a central piece of the embedded systems that normally have a very specific job to

do. The size constraints, and dedicated end application nature, rarely warrant the use of a full package

implementation.

Applications - few to mention:

Command and control systems, heart pacemaker, industrial automation, and modern robotics systems

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 7

Key Features - Tasks Synchronization through Semaphores / Queues

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 8

Educating Technologies

FreeRTOS architecture

K

e
y

C
o

m
p

o
n

e
n

ts

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 9

Queue process

Semaphore from ISR

FreeRTOS configuration

FreeRTOSConfig.h

Reference:

https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-

stmicroelectronics.pdf

https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-stmicroelectronics.pdf

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 10

Educating Technologies

Free RTOS APIs

https://www.freertos.org/wp-content/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 11

Task-0

This task demonstrates:

 Simple working of a freeRTOS on STM32L4S5 device

Objective

 Learn bare metal set up dealing with the hardware

 Learn how to set up the RTOS with DMA and Interrupt in STM32CubeMX.

 Generate code in STM32CubeMX and using HAL functions.

 Create applications to start the freeRTOS and learn how to set freeRTOS in different modes.

On the target board,

You will use GPIOs (LEDs) and/or USART (Tera-Term) to demonstrate the working of RTOS;

 Using the IOT board, based on STM32L4S5 µController from ST-Microelectronics Ltd.

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 12

Educating Technologies

Procedure

Launch Keil µVision Development Tools

Double Click the Icon

 In the New µVision Project window, browse to the folder “bbb” you just created

 Enter a name for the project file. We will call it “hello” and click Save

Open a

new

project

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 13

Select Device for Target

 STMicroelectronics STM32L4S5VITx

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 14

Educating Technologies

Alternatively: Try,

Project -> Options for Target „Target 1‟-> Device,

Scroll down, and select “STM32L4S5VITx”

Configure default Initialization files

Alternatively: Try,

Project -> Manage -> Manage Run-Time Environment,

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 15

Project Outlook

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 16

Educating Technologies

Compiler & Debugger Setting (Project  Options for Target)

<OK>

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 17

Add a Source File to the Project

 Click the File->New button to add a new text file to the display with the default name Text1.

 From the menu, select File > Save As… to open the Save As dialog box. Browse to the

project folder if it is not already there. Type in the file name “main.c” and click Save.

 The new file needs be added to the project. Right click on the folder Source Group 1 in the

Project window and select Add Existing Files to Group „Source Group 1‟…

 In the dialog box, browse to the project folder if it is not already there.

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 18

Educating Technologies

Click select main.c then click Add.

 The file should appear in the project window under Source Group 1 folder.

Click Close to close the dialog box.

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 19

Create RTOS based Project Configuration

There are two (2) versions of freeRTOS implementation.

 Standard (Traditional – original implementation)

 CMSIS-RTOS2 (An ARM version which is platform independent)

NOTE:

Make sure there is one and only one configuration produced in any working folder.

If necessary, make the working folder an empty folder by deleting everything from there.

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 20

Educating Technologies

1 of 2 options

Standard

freeRTOS

Configuration

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 21

Correction!!

Update the priority levels

Cross checked (Reference Manual - STM32L4S5)

 4

15

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 22

Educating Technologies

2 of 2 options

a)

b)

CMSIS

RTOS2

Configuration

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 23

c)

d)

Ignore this step, if “main.c” file is already in the project otherwise complete the below listed

steps.

 Open a new blank file

File  New

File  Save As:

“main.c”

 Add this file into the project

freeRTOS Support

µController Initialization

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 24

Educating Technologies

 Task-1

This task demonstrates how to:

 Configure GPIO ports

 Create multiple Tasks in RTOS (FreeRTOS)

 Toggles a set of LEDs (PA5 & PB14) of PORTA & PORTB through Tasks- 1 & 2

 C Programming Code for this task is given next

 Copy & Paste the same in “main.c” file

 Build, Download, and Run on the Embedded Kit / Board

 Monitor the LEDs toggling patterns (sequences)

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 25

 Copy and paste the sample code into the “main.c” editor window.

// Example-1: RTOS based multitasking

//

#include <stdio.h>

#include "RTE_Components.h" // Component selection

#include CMSIS_device_header

#include "FreeRTOS.h" // Keil::RTOS:FreeRTOS:Core

#include "task.h" // Keil::RTOS:FreeRTOS:Core

#include "stm32l4s5xx.h"

/*---*/

void vTask1(void *pvParameters) {

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;) {

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 vTaskDelay(100); // freeRTOS function

 }

}

/*---*/

void vTask2(void *pvParameters) {

 /* As per most tasks, this task is implemented in an infinite loop. */

 for(;;) {

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON

 vTaskDelay(500); // freeRTOS function

 }

}

// **

// Initialize FreeRTOS and start the initial set of tasks.

// **

int main(void){

/* Create required number of task(s) */

 xTaskCreate(vTask1, /* Pointer to the function that implements the task. */

 "Task 1", /* Text name for the task. */

 200, /* Stack depth in words. */

 NULL, /* We are not using the task parameter. */

 1, /* This task will run at priority 1. */

 NULL); /* We are not using the task handle. */

 xTaskCreate(vTask2, "Task 1", 200, NULL, 1, NULL);

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 26

Educating Technologies

/* GPIO Port configuration */

 // Enable the clock to GPIO Port B

 RCC->AHB2ENR |= 0x2; //RCC_AHB2ENR_GPIOB_EN;

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOB->MODER &= (unsigned int)~(0x3 << 14*2); // Clear bit PB14

 GPIOB->MODER |= (0x1 << 14*2); // Set bit PB14 Output

 // Enable the clock to GPIO Port A

 RCC->AHB2ENR |= 0x1; //RCC_AHB2ENR_GPIOA_EN;

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOA->MODER &= (unsigned int)~(0x3 << 5*2); // Clear bit PA5

 GPIOA->MODER |= (0x1 << 5*2); // Set bit PA5 Output

/* Start the scheduler so our tasks start executing. */

 vTaskStartScheduler();

/* If all is well we will never reach here as the scheduler will now be

 running. If we do reach here then it is likely that there was insufficient

 heap available for the idle task to be created. */

 while(1) {

 }

} // Program ends here

Exercise:

 Change priorities of;

o task1 to 1,

o task2 to 2

o What is the impact and difference?

 Change priorities of;

o task1 to 2,

o task2 to 1

o What is the impact and difference?

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 27

Task-2

This task is similar to Task-1. It uses xTaskDelayUntil() function.

The given activities are synchronized through “Semaphore” functions.

// Example-1: RTOS based multitasking

// This task uses "Semaphore" function

#include <stdio.h>

#include "RTE_Components.h" // Component selection

#include CMSIS_device_header

#include "FreeRTOS.h" // Keil::RTOS:FreeRTOS:Core

#include "task.h" // Keil::RTOS:FreeRTOS:Core

#include <semphr.h> // Keil::RTOS:FreeRTOS:Core

#include "stm32l4s5xx.h"

// declare semaphore

SemaphoreHandle_t xSemaphore;

/*---*/

// This thread generates semaphore

void vTask1(void *pvParameters) {

 portTickType xLastWakeTime;

 xLastWakeTime = xTaskGetTickCount(); // Initialized with the current tick

 // Infinite loop.

 for(;;) {

 xSemaphoreGive(xSemaphore); // Post Sema

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 vTaskDelayUntil(&xLastWakeTime, (500)); // Absolute delay of 500 ticks

 }

}

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 28

Educating Technologies

/*---*/

// This thread picks up semaphore

void vTask2(void *pvParameters) {

 // Infinite loop.

 for(;;) {

 xSemaphoreTake(xSemaphore, portMAX_DELAY); // Pend Sema (0xffff, max. ticks)

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON

 }

}

// **

// Initialize FreeRTOS and start the initial set of tasks.

// **

int main(void){

/* Create required number of task(s) */

 xTaskCreate(vTask1, /* Pointer to the function that implements the task. */

 "Task 1", /* Text name for the task. */

 200, /* Stack depth in words. */

 NULL, /* We are not using the task parameter. */

 1, /* This task will run at priority 1. */

 NULL); /* We are not using the task handle. */

 xTaskCreate(vTask2, "Task 2", 200, NULL, 2, NULL);

/* GPIO Port configuration */

 // Enable the clock to GPIO Port B

 RCC->AHB2ENR |= 0x2; //RCC_AHB2ENR_GPIOB_EN;

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOB->MODER &= (unsigned int)~(0x3 << 14*2); // Clear bit PB14

 GPIOB->MODER |= (0x1 << 14*2); // Set bit PB14 Output

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 29

 // Enable the clock to GPIO Port A

 RCC->AHB2ENR |= 0x1; //RCC_AHB2ENR_GPIOA_EN;

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOA->MODER &= (unsigned int)~(0x3 << 5*2); // Clear bit PA5

 GPIOA->MODER |= (0x1 << 5*2); // Set bit PA5 Output

/* Attempt to create a semaphore. */

 xSemaphore = xSemaphoreCreateBinary();

 if(xSemaphore != NULL) {

 /* The semaphore was created successfully. */

 /* Start the scheduler so our tasks start executing. */

 vTaskStartScheduler();

 }

 else {

 // Sema creation failed, do something else

 }

/* If all is well we will never reach here as the scheduler will now be

 running. If we do reach here then it is likely that there was insufficient

 heap available for the idle task to be created. */

 while(1) {

 }

} // Program ends here

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 30

Educating Technologies

Task-3

This task is similar to Task-1.

The given activities are synchronized through “Queue” functions.

Monitor Tera-Term Window to see the messages movement from sender to receiver blocks.

// Example-1: RTOS based multitasking

// This lab uses "QUEUE" to synchronize the tasks.

// Monitor Tera-Term Window for the data movement

//

// Task 1 (PRODUCER) - Generates messages

// Task 2 (CONSUMER) - Displays data on “Tera-Term” window

//

#include <stdio.h>

#include "RTE_Components.h" // Component selection

#include CMSIS_device_header

#include "FreeRTOS.h" // Keil::RTOS:FreeRTOS:Core

#include "task.h" // Keil::RTOS:FreeRTOS:Core

#include <queue.h>

#include "stm32l4s5xx.h"

// Define the data type that will be queued

typedef struct { // object data type

 uint8_t msgID;

 uint8_t msgData[5];

} MSGQUEUE_OBJ_t;

// Define the queue parameters

#define QUEUE_LENGTH 16

#define QUEUE_ITEM_SIZE sizeof(MSGQUEUE_OBJ_t)

static void vSenderTask(void *pvParameters) ;

static void vReceiverTask(void *pvParameters);

// **

// Initialize FreeRTOS and start the initial set of tasks.

// **

int main(void) {

 // Enable the clock to GPIO Port A

 RCC->AHB2ENR |= 1; /* enable GPIOA clock */

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOA->MODER &= (unsigned int)~(0x3 << 5*2); // Clear bit PA5

 GPIOA->MODER |= (0x1 << 5*2); // Set bit PA5 Output

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 31

 // Enable the clock to GPIO Port B

 RCC->AHB2ENR |= 0x2; //RCC_AHB2ENR_GPIOB_EN;

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOB->MODER &= (unsigned int)~(0x3 << 14*2); // Clear bit PB14

 GPIOB->MODER |= (0x1 << 14*2); // Set bit PB14 Output

// --

// Configure USART1

 // Enable the clock to GPIO Port B

 RCC->AHB2ENR |= 0x2; //RCC_AHB2ENR_GPIOB_EN;

 GPIOB->AFR[0] &= ~0x0F000000;

 GPIOB->AFR[0] |= 0x07000000; /* PB6 for USART1 TX */

 GPIOB->AFR[0] &= ~0xF0000000;

 GPIOB->AFR[0] |= 0x70000000; /* PB7 for USART1 RX */

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOB->MODER &= (unsigned int)~(0x3 << 6*2); // Clear bit PB6

 GPIOB->MODER |= (0x2 << 6*2); // Set bit PB6 Alternate

 GPIOB->MODER &= (unsigned int)~(0x3 << 7*2); // Clear bit PB7

 GPIOB->MODER |= (0x2 << 7*2); // Set bit PB7 Alternate

 RCC->APB2ENR |= 0x4000; /* enable USART1 clock */

 USART1->CR1 = 0x000C; /* enable Tx, Rx, 8-bit data */

 USART1->CR2 = 0x0000; /* 1 stop bit */

 USART1->CR3 = 0x0000; /* no flow control */

 USART1->BRR = 0x0023; /* 115200 baud @ 16 MHz */

 USART1->CR1 |= 0x0001; /* enable USART1 */

// --

// Create the queue, storing the returned handle in the xQueue variable.

 QueueHandle_t xQueue;

 xQueue = xQueueCreate(QUEUE_LENGTH, QUEUE_ITEM_SIZE);

 if(xQueue != NULL) {

 // Create two instances of the PRODUCER task

 // Tasks pass on the queue handle as the task parameter

 // Both instances of tasks are created at priority 1

 xTaskCreate(vSenderTask,

 "Sender1",

 100,

 (void *) xQueue, // The queue handle is used as the task parameter.

 1,

 NULL

);

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 32

Educating Technologies

 xTaskCreate(vSenderTask, "Sender2", 100, (void *) xQueue, 1, NULL);

 // Create a CONSUMER task at priority 2

 xTaskCreate(vReceiverTask, "Receiver", 100, (void *) xQueue, 2, NULL);

 // Start the task executing

 vTaskStartScheduler();

 }

// Execution will only reach here if there was not enough FreeRTOS heap memory

// remaining for the idle task to be created

 while(1) {

 }

} // main() ends here

/*---*/

// Generate data stream

static void vSenderTask(void *pvParameters) {

 portBASE_TYPE xStatus;

 MSGQUEUE_OBJ_t xMessage [2] = {

 {'A', 11,2,3,4,5},

 {'B', 16,7,8,9,0xa}

 };

 int i=0;

 // The queue handle is passed into this task as the task parameter.

 // Cast the parameter back to a queue handle.

 QueueHandle_t xQueue;

 xQueue = (QueueHandle_t) pvParameters;

 for(;;) {

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 vTaskDelay(100);

 // Send the message to the queue, waiting for 10 ticks for space to become

 // available if the queue is already full.

 i ^= 0x1; // update #msg index

 do {

 xStatus = xQueueSendToBack(xQueue, &xMessage[i], 10);

 } while (xStatus != pdPASS);

// Allow the other sender task to execute.

 taskYIELD();

 }

} // Thread ends here

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 33

/*---*/

// Pick up received messages

static void vReceiverTask(void *pvParameters) {

 portBASE_TYPE xStatus;

 MSGQUEUE_OBJ_t xMessage;

 int i, mm;

 uint8_t data;

// The queue handle is passed into this task as the task parameter

 QueueHandle_t xQueue;

 xQueue = (QueueHandle_t) pvParameters;

 for(;;) {

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON

 vTaskDelay(100);

 // Wait for the maximum period for data to become available on the queue.

 xStatus = xQueueReceive(xQueue, &xMessage, 1000); // xTicksToWait = 1000

 if(xStatus == pdPASS) {

 // xMessage now contains the received data.

 mm = sizeof(xMessage.msgData) / sizeof(uint8_t);

 for (i=0; i< mm; i++) {

 data = xMessage.msgData[i];

 printf("%d ", data & 0xff); // // write to monitor

 }

 }

 }

} // Thread ends here

// --

// The code below is the interface to the C standard I/O library.

// All the I/O are directed to the console, which is UART1.

FILE __stdout = {1};

/* Called by C library console/file output */

 int fputc(int ch, FILE *f) {

 while (!(USART1->ISR & 0x0080)) {} // Wait until Tx buffer empty

 USART1->TDR = ch;

 return ch;

}

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 34

Educating Technologies

Task-3/b

This task is similar to Task-1.

This task uses “freeRTOS_V2” variant

The given activities are synchronized through “Queue” functions.

Monitor Tera-Term Window to see the messages movement from sender to receiver blocks.

Procedure

 Create an empty folder

 Open a New Project

 Walk-through the necessary steps

 Create “CMSIS freeRTOS-V2” based Project Configuration

 Edit “main.c”

 Insert the sample code (listed below)

 Build / Flash download code / Run, and Monitor LEDs on the h/w board

 Monitor “Tera-Term” Window, the below shown messages should be there

// Example-1: RTOS based multitasking

// This lab uses "QUEUE" to synchronize the tasks.

// Monitor Tera-Term Window for the data movement

//

// Task 1 (PRODUCER) - Generates messages

// Task 2 (CONSUMER) - Displays data on “Tera-Term” window

//

#include "RTE_Components.h" // Component selection

#include CMSIS_device_header

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 35

#include "FreeRTOS.h" // Keil::RTOS:FreeRTOS:Core

#include "task.h" // Keil::RTOS:FreeRTOS:Core

#include <queue.h>

#include "stm32l4s5xx.h"

#include "cmsis_os2.h" // CMSIS RTOS header file

#include <stdio.h>

typedef struct { // object data type

 uint8_t Idx;

 char Buf[5];

} MSGQUEUE_OBJ_t;

/*--

 * Message Queue creation & usage

 ---/

#define MSGQUEUE_OBJECTS 16 // number of Message Queue Objects

osMessageQueueId_t mid_MsgQueue; // message queue id

osThreadId_t tid_Thread_MsgQueue1; // thread id 1

osThreadId_t tid_Thread_MsgQueue2; // thread id 2

void Thread_MsgQueue1 (void *argument); // thread function 1

void Thread_MsgQueue2 (void *argument); // thread function 2

int Init_MsgQueue (void) {

 mid_MsgQueue = osMessageQueueNew(MSGQUEUE_OBJECTS, sizeof(MSGQUEUE_OBJ_t), NULL);

 if (mid_MsgQueue == NULL) {

 ; // Message Queue object not created, handle failure

 }

 tid_Thread_MsgQueue1 = osThreadNew(Thread_MsgQueue1, NULL, NULL);

 if (tid_Thread_MsgQueue1 == NULL) {

 return(-1);

 }

 tid_Thread_MsgQueue2 = osThreadNew(Thread_MsgQueue2, NULL, NULL);

 if (tid_Thread_MsgQueue2 == NULL) {

 return(-1);

 }

 return(0);

}

void Thread_MsgQueue1 (void *argument) {

 MSGQUEUE_OBJ_t msg = {0};

 msg.Idx = 'A';

 msg.Buf[0] = 83;

 msg.Buf[1] = 85;

 while (1) {

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 vTaskDelay(100);

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 36

Educating Technologies

 osMessageQueuePut(mid_MsgQueue, &msg, 0U, 0U);

 osThreadYield(); // Suspend thread for a system tick

 }

}

void Thread_MsgQueue2 (void *argument) {

 MSGQUEUE_OBJ_t msg = {0};

 osStatus_t status;

 char str_tmp[100] = {0};

 while (1) {

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON

 vTaskDelay(100);

 status = osMessageQueueGet(mid_MsgQueue, &msg, NULL, 0U); // wait for message

 if (status == osOK) {

 snprintf(str_tmp, sizeof(str_tmp), "%c %d %d \n", msg.Idx, msg.Buf[0], msg.Buf[1]);

 int i=0;

 while (str_tmp[i] != '\n') {

 while (!(USART1->ISR & 0x0080)) {} // Wait until Tx buffer empty

 USART1->TDR = str_tmp[i];

 i++; if (i > sizeof(str_tmp)) {i=0; break;}

 }

 }

 }

}

// **

// Initialize FreeRTOS and start the initial set of tasks.

// **

int main(void) {

 // Enable the clock to GPIO Port A

 RCC->AHB2ENR |= 1; /* enable GPIOA clock */

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOA->MODER &= (unsigned int)~(0x3 << 5*2); // Clear bit PA5

 GPIOA->MODER |= (0x1 << 5*2); // Set bit PA5 Output

 // Enable the clock to GPIO Port B

 RCC->AHB2ENR |= 0x2; //RCC_AHB2ENR_GPIOB_EN;

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOB->MODER &= (unsigned int)~(0x3 << 14*2); // Clear bit PB14

 GPIOB->MODER |= (0x1 << 14*2); // Set bit PB14 Output

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 37

// --

// Configure USART1

 // Enable the clock to GPIO Port B

 RCC->AHB2ENR |= 0x2; //RCC_AHB2ENR_GPIOB_EN;

 GPIOB->AFR[0] &= ~0x0F000000;

 GPIOB->AFR[0] |= 0x07000000; /* PB6 for USART1 TX */

 GPIOB->AFR[0] &= ~0xF0000000;

 GPIOB->AFR[0] |= 0x70000000; /* PB7 for USART1 RX */

 // MODE: 00: Input mode, 01: General purpose output mode

 // 10: Alternate function mode, 11: Analog mode (reset state)

 GPIOB->MODER &= (unsigned int)~(0x3 << 6*2); // Clear bit PB6

 GPIOB->MODER |= (0x2 << 6*2); // Set bit PB6 Alternate

 GPIOB->MODER &= (unsigned int)~(0x3 << 7*2); // Clear bit PB7

 GPIOB->MODER |= (0x2 << 7*2); // Set bit PB7 Alternate

 RCC->APB2ENR |= 0x4000; /* enable USART1 clock */

 USART1->CR1 = 0x000C; /* enable Tx, Rx, 8-bit data */

 USART1->CR2 = 0x0000; /* 1 stop bit */

 USART1->CR3 = 0x0000; /* no flow control */

 USART1->BRR = 0x0023; /* 115200 baud @ 16 MHz */

 USART1->CR1 |= 0x0001; /* enable USART1 */

 // Start the task executing

 Init_MsgQueue();

 vTaskStartScheduler();

// Execution will only reach here if there was not enough FreeRTOS heap memory

// remaining for the idle task to be created

 while(1) {

 }

} // main() ends here

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 38

Educating Technologies

Task-4

Launch STM32CubeMX Development Tools

Double Click the Icon

THIS GRAPHICAL TOOL IS TO ASSIST THE EMBEDDED SYSTEM HARDWARE INITIALIZATION AND

SETTING OF THE RELEVANT PARAMETERS WITHOUT A DIRECT ENGAGEMENT AT THE REGISTERS

LEVEL. BASICALLY, THE LOW-LEVEL INITIALIZATION REMAINS HIDDEN FOR A SIMPLE, CLEAN,

AND HASSLE FREE TASK IMPLEMENTATIONS (I.E., APPLICATION SPECIFIC CONFIGURATIONS).

File  New Project

Select “Hardware Platform”

Board Selector

Open a

new

project

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 39

Select the “h/w board”,

Click “Start Project”

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 40

Educating Technologies

Reset “Preconfigured Pinout”

 Select “Pinout & Configuration”,

 Click “Pinout”

 Right Click, “Clear Pinouts”

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 41

Configure FreeRTOS

Configure / Edit default Tasks

Add a 2nd Task

o Click “Add”

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 42

Educating Technologies

Optional – Enable library (new version)

Choose Timer as the HAL Timebase Source (Instead of Systick)

NOTE:

The SysTick is a special timer in most ARM processors that‟s generally reserved for operating system purposes. By

default, SysTick will be used for things like HAL_Delay() and HAL_GetTick(). As a result, the STM32 HAL framework

gives SysTick a very high priority. However, FreeRTOS needs SysTick for its scheduler, and it requires SysTick to be a

much lower priority. Therefore, a quick work around is to use a Timer as a Time-base source in the cases of freeRTOS.

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 43

Click “Pinout and Configuration”

Right Click on “PA5”, and declare it as a “GPIO Output” signal

Right Click on “PB14”, and declare it as a “GPIO Output” signal

Click “Project Manager”

Click “Project”

Write “Project Name”

Select “Toolchain / IDE)

Click “Generate Code”

STM32CubeIDE

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 44

Educating Technologies

Open “Project” in “STM32CubeIDE”

Update “main.c”

void StartTask1(void *argument)

{

 /* USER CODE BEGIN 5 */

 /* Infinite loop */

 for(;;)

 {

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON

 osDelay(100);

 }

 /* USER CODE END 5 */

}

void StartTask2(void *argument)

{

 /* USER CODE BEGIN StartTask2 */

 /* Infinite loop */

 for(;;)

 {

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 osDelay(50);

 }

 /* USER CODE END StartTask2 */

}

 Build “Project” (In STM32CubeIDE)

 Flash “binary code” on the h/w board (In STM32CubeProgrammer)

 Reset h/w board (By pressing switch/button on the board)

 Monitor “LEDS” toggling on the h/w board

Reference

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__SemaphoreMgmt.html

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 45

Task-4/b

Add “Semaphore” feature (Continuation to previous task)

Click “Generate Code”

STM32CubeIDE

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 46

Educating Technologies

Open “Project” in “STM32CubeIDE”

Update “main.c”

void StartTask1(void *argument)

{

 /* USER CODE BEGIN 5 */

 /* Infinite loop */

 for(;;)

 {

 osSemaphoreRelease(myBinarySemaHandle);

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON
 osDelay(100);

 }

 /* USER CODE END 5 */

}

void StartTask2(void *argument)

{

 /* USER CODE BEGIN StartTask2 */

 /* Infinite loop */

 for(;;)

 {

 osSemaphoreAcquire(myBinarySemaHandle, osWaitForever);

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 }

 /* USER CODE END StartTask2 */

}

 Build “Project” (In STM32CubeIDE)

 Flash “binary code” on the h/w board (In STM32CubeProgrammer)

 Reset h/w board (By pressing switch/button on the board)

 Monitor “LEDS” toggling on the h/w board

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 47

Task-4/c

Add “Queue” feature (Continuation to previous task)

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 48

Educating Technologies

Add “UART1” feature

Configure USART Pins

Click

“Generate Code”

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 49

Open “Project” in “STM32CubeIDE”

Update “main.c”

#include <stdio.h>

typedef struct { // object data type

 uint8_t Buf[32];

 uint8_t Idx;

} MSGQUEUE_OBJ_t;

void StartTask1(void *argument)

{

 MSGQUEUE_OBJ_t msg;

 while (1) {

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON

 osDelay(100);

 msg.Buf[0] = 0x55U; // do some work...

 msg.Idx = 0U;

 osMessageQueuePut(myQueueHandle, &msg, 0U, 0U);

 osThreadYield(); // suspend thread

 }

}

void StartTask2(void *argument)

{

 char str_tmp[100] = ""; // To display formatted messages

 MSGQUEUE_OBJ_t msg;

 osStatus_t status;

 while (1) {

 status = osMessageQueueGet(myQueueHandle, &msg, NULL, 0U); // wait for message

 if (status == osOK) {

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 osDelay(50);

 snprintf(str_tmp,100," %d \n\r", msg.Buf[0]);

 HAL_UART_Transmit(&huart1,(uint8_t *)str_tmp,sizeof(str_tmp),1000);

 }

 }

}

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 50

Educating Technologies

 Build “Project” (In STM32CubeIDE)

 Flash “binary code” on the h/w board (In STM32CubeProgrammer)

 Reset h/w board (By pressing switch/button on the board)

 Monitor “LEDS” toggling on the h/w board and “Tera-Term” Console window for the messages

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

EE 310 - Digital Systems Engineering 51

Exercise

This task demonstrates how to:

 Configure GPIO ports

 Create multiple Tasks in RTOS (Free RTOS)

 Generate A/D data (Task 1)

 Generate D/A data (Task 2)

Construct a C program to demonstrate and verify the design behaviour.

TRAINING MANUAL

Unit 10: Getting started with SPI Bus

Yanbu Industrial College 52

Educating Technologies

Review Questions

Q1.

Q2

Q3

