

TRAINING MANUAL

EE-310

DIGITAL SYSTEM ENGINEERING

Unit 9

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 3 | P a g e

Getting Started With RTOS

Time allocation: 3 Hours

Objectives

The aim of this module is to get immersed into embedded programming on a real hardware.

To complete the basic workflow, simple applications are developed, implemented, and

demonstrated in an Embedded System work environment. Experiment(s) in this module are

conducted using Real-Time OS (RTOS) to demonstrate some of the most common practical

applications.

Resources

 Desktop PC / Laptop

 Software development Tools

 Embedded Kit (ARM Cortex Series)

 Jumper Wires / Breadboard / LEDs, Switches

Topics to be covered:

1. Getting Started a Tutorial Project

2. ARM Cortex M4 I/O Programming

3. GPIO (General Purpose I/O) Programming and Interfacing

4. Reading Switches and Displaying the same on LEDs

5. Standard Application(s) Interfacing and Programming

6. Realization of FreeRTOS (Real-Time Operating System)

7. Internet-of-Things (IOT) Application(s) Interfacing and Programming

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

4 | P a g e EE-310 (DSE)

Embedded System Setup

(STM32 µController)

Document: Datasheet (stm32l4s5) and Reference manual (stm32l4s5)

STM32 (ARM Cortex M4)

Starter Kit - Development

and Education Board

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 5 | P a g e

Expansion Connector

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

6 | P a g e EE-310 (DSE)

Getting Started With Embedded RTOS (freeRTOS)

What is an RTOS and Multitasking?

A RTOS is a real-time operating system which manages software and hardware resources on a

computing system and provides services to application software which are not possible with bare

metal.

A RTOS is basically a software component that rapidly switches between tasks, giving the impression

that multiple programs are being executed at the same time on a single processing core.

In actual fact the processing core can only execute one program at any one time, and what the RTOS

is actually doing is rapidly switching between individual programming threads (or Tasks) to give the

impression that multiple programs are executing simultaneously.

When switching between Tasks the RTOS has to choose the most appropriate task to load next. There

are several scheduling algorithms available. However, to provide a responsive system most RTOS use

a pre-emptive scheduling algorithm.

In a pre-emptive system each Task is given an individual priority value. The faster the required

response, the higher the priority level assigned. When working in pre-emptive mode, the task chosen

to execute is the highest priority task that is able to execute. This results in a highly responsive

system.

RTOS

Architecture

Examples:

 freetRTOS

 Keil RTX

 µC/OS

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 7 | P a g e

While selecting a RTOS, one of the most important considerations is what type of response is desired

– Is a hard real time response required? This means that there are precisely defined deadlines that, if

not met, will cause the system to fail. Alternatively, would a non-deterministic, soft real time response

be appropriate? In which case there are no guarantees as to when each task will complete.

The choice of RTOS can greatly affect the development of the design.

By selecting an appropriate RTOS the developer gains:

 A Task based design that enhances modularity, simplifies testing and encourages code reuse;

 An environment that makes it easier for engineering teams to develop together;

 Abstraction of timing behaviour from functional behaviour, which should result in smaller

code size and more efficient use of available resources.

Peripheral support, memory usage and real-time capability are key features that govern the suitability

of the RTOS. Using the wrong RTOS, particularly one that does not provide sufficient real time

capability, will severely compromise the design and viability of the final product.

The RTOS needs to be of high quality and easy to use. Developing embedded projects is difficult and

time consuming – the developer does not want to be struggling with RTOS related problems as well.

The RTOS must be a trusted component that the developer can rely on, supported by in-depth training

and good, responsive support. FreeRTOS could be one of best choices amongst so many in the field.

What is FreeRTOS?

FreeRTOS is a class of RTOS that is designed to be small enough to run on a microcontroller (µC). A

microcontroller is a small and resource constrained processor that incorporates, on a single chip, the

processor itself, read only memory (ROM / Flash) to hold the program to be executed, and the random

access memory (RAM) needed by the programs it executes. Typically the program is executed from

the read only memory. One of the main attractions in freeRTOS is its free of cost licensing model.

Microcontrollers are a central piece of the embedded systems that normally have a very specific job to

do. The size constraints, and dedicated end application nature, rarely warrant the use of a full package

implementation.

Applications - few to mention:

Command and control systems, heart pacemaker, industrial automation, and modern robotics systems

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

8 | P a g e EE-310 (DSE)

Key Features - Tasks Synchronization through Semaphores / Queues

Producer Threads

Consumer Threads

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 9 | P a g e

FreeRTOS architecture

FreeRTOS configuration

FreeRTOSConfig.h

Reference:

https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-

stmicroelectronics.pdf

K
e

y

C
o

m
p

o
n

e
n

ts

https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/dm00105262-developing-applications-on-stm32cube-with-rtos-stmicroelectronics.pdf

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

10 | P a g e EE-310 (DSE)

FreeRTOS APIs

https://www.freertos.org/wp-content/uploads/2018/07/FreeRTOS_Reference_Manual_V10.0.0.pdf

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 11 | P a g e

Task-0

This task demonstrates:

 Simple working of a freeRTOS on STM32L4S5 device

Objective

 Learn how to set-up Real-Time OS

 Create applications to start the freeRTOS

 Generate code in STM32Cube Tools using CMSIS functions

On the target board,

You will use GPIOs (LEDs) and/or USART (Tera-Term) to demonstrate the working of RTOS.

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

12 | P a g e EE-310 (DSE)

Procedure

Launch “STM32CubeIDE” Development Tool

Double Click the Icon

File New Project

 STM32 Project

Select “Hardware Platform”

Open a

new

project

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 13 | P a g e

Select the specific “h/w board”, (if there are multiple options)

<Next>

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

14 | P a g e EE-310 (DSE)

Type in “Project name”

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 15 | P a g e

Reset “default Pinout”

 Select “Pinout & Configuration”,

 Click “Pinout”

 Right Click, “Clear Pinouts”

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

16 | P a g e EE-310 (DSE)

H/W Configuration

To demonstrate working of the given exercise,

Configure GPIO ports

Right Click on PA0-PA7, PB14

Select, GPIO_Output

Right Click on PC0- PC3, PC13

Select, GPIO_Input // With Pull-Up

 This enables:

o Clock for port(s), and

o Sets the direction of the port as an input or output

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 17 | P a g e

Click “Pinout & Configuration”

Configure GPIO (mode)

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

18 | P a g e EE-310 (DSE)

Configure FreeRTOS

Configure / Edit default Tasks

Add a 2nd Task

o Click “Add”

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 19 | P a g e

Optional – Enable library (new version)

Choose Timer as the HAL Timebase Source (Instead of Systick)

NOTE:

The SysTick is a special timer in most ARM processors that’s generally reserved for operating system purposes. By

default, SysTick will be used for things like HAL_Delay() and HAL_GetTick(). As a result, the STM32 HAL framework

gives SysTick a very high priority. However, FreeRTOS needs SysTick for its scheduler, and it requires SysTick to be a

much lower priority. Therefore, a quick work around is to use a Timer as a Time-base source in the cases of freeRTOS.

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

20 | P a g e EE-310 (DSE)

Generate Code

 Open “main.c” and add application code

 To Build & Run the project; Try,

 Project Build Project

 Run Run As STM32 Application

o Press “User” Push button

o Monitor “LED” on the h/w

Code

Processing

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 21 | P a g e

Task-1

This task demonstrates how to:

 Configure GPIO ports

 Create multiple Tasks in RTOS (FreeRTOS)

 Toggles a set of LEDs (PA5 & PB14) of PORTA & PORTB through Tasks- 1 & 2

 Sample Code for this task is given next

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

22 | P a g e EE-310 (DSE)

Sample Code to update “main.c”

void StartTask1(void *argument)

{

 /* USER CODE BEGIN 5 */

 /* Infinite loop */

 for(;;)

 {

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON

 osDelay(100); // vTaskDelay(100);

 }

 /* USER CODE END 5 */

}

void StartTask2(void *argument)

{

 /* USER CODE BEGIN StartTask2 */

 /* Infinite loop */

 for(;;)

 {

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 osDelay(50);

 }

 /* USER CODE END StartTask2 */

}

 Build “Project”

 Flash “binary code” on the h/w

 Reset h/w board (By pressing switch/button on the board)

 Monitor “LEDS” toggling on the h/w board

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 23 | P a g e

Task-2

Add “Semaphore” feature (Continuation to previous task)

Click “Generate Code”

STM32CubeIDE

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

24 | P a g e EE-310 (DSE)

Sample Code to update “main.c”

void StartTask1(void *argument)

{

 /* USER CODE BEGIN 5 */

 /* Infinite loop */

 for(;;)

 {

 osSemaphoreRelease(myBinarySemaHandle);

 GPIOB->ODR ^= (0x1 << 14); //PB14 ON
 osDelay(100);

 }

 /* USER CODE END 5 */

}

void StartTask2(void *argument)

{

 /* USER CODE BEGIN StartTask2 */

 /* Infinite loop */

 for(;;)

 {

 osSemaphoreAcquire(myBinarySemaHandle, osWaitForever);

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 }

 /* USER CODE END StartTask2 */

}

 Build “Project”

 Flash “binary code” on the h/w

 Reset h/w board (By pressing switch/button on the board)

 Monitor “LEDS” toggling on the h/w board

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 25 | P a g e

Task-3

Add “Queue” feature (Continuation to previous task)

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

26 | P a g e EE-310 (DSE)

Add “UART1” feature

Configure USART Pins

Click

“Generate Code”

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 27 | P a g e

Sample Code to update “main.c”

/* USER CODE BEGIN 0 */

#include <stdio.h>

typedef struct { // object data type

 uint8_t Idx;

 uint8_t Buf[5];

} MSGQUEUE_OBJ_t;

/* USER CODE END 0 */

// Update queue size in “main.c”

/* creation of myQueue */

 myQueueHandle = osMessageQueueNew (16, sizeof(MSGQUEUE_OBJ_t), &myQueue_attributes);

void StartTask1(void *argument)
{

 MSGQUEUE_OBJ_t msg [16] = {

 {'A', {1,2,3,4,5} },
 {'B', {6,7,8,9,10} },
 {'C', {11,12,13,14,15} }
 }; // = {0};

 uint8_t i=0;
 osStatus_t status;

 while (1) {
 GPIOA->ODR ^= (0x1 << 5); //PA5 ON
 vTaskDelay(100);

 do {
 status = osMessageQueuePut(myQueueHandle, &msg[i], 0U, 0U);

 } while (status != osOK);

 i++;
 i= i & 0xf; // restricted to 16 messages

 osThreadYield(); // Suspend thread for a system tick
 }

}

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

28 | P a g e EE-310 (DSE)

void StartTask2(void *argument)

{

 char str_tmp[100] = ""; // To display formatted messages

 MSGQUEUE_OBJ_t msg;

 osStatus_t status;

 while (1) {

status = osMessageQueueGet(myQueueHandle, &msg, NULL, 0U); // wait for message

 if (status == osOK) {

 GPIOA->ODR ^= (0x1 << 5); //PA5 ON

 osDelay(50);

 snprintf(str_tmp,100," %c %d \n\r", msg.Idx, msg.Buf[2]);

 HAL_UART_Transmit(&huart1,(uint8_t *)str_tmp,sizeof(str_tmp),1000);

 }

 }

}

Realize Code

 Build “Project”

 Flash “binary code” on the h/w

 Reset h/w board (By pressing switch/button on the board)

 Monitor h/w board and “Tera-Term” Console window for the messages

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

EE-310 (DSE) 29 | P a g e

Exercise

This task is to demonstrate how to:

 Configure GPIO ports

 Create multiple Tasks in RTOS (Free RTOS)

 Generate A/D data (Task 1)

 Generate D/A data (Task 2)

Construct a C program to demonstrate and verify the design behaviour.

TRAINING MANUAL
Unit 9 - Getting Started With RTOS

30 | P a g e EE-310 (DSE)

Reference(s):

https://www.keil.com/pack/doc/CMSIS/RTOS2/html/group__CMSIS__RTOS__SemaphoreMgmt.html

Review Questions

Q1.

Q2

Q3

