
In My Codes

In my main.c:

In my STM32H750XBHX_FLASH.ld:

/* USER CODE BEGIN Includes */

#include <string.h>

/* USER CODE END Includes */

...

/* USER CODE BEGIN PV */

__attribute__((section(".sdram"))) unsigned char myMemoryPool[4096];

/* USER CODE END PV */

...

int main(void)

{

 /* USER CODE BEGIN 1 */

 memset(myMemoryPool, 0xFF, sizeof(myMemoryPool));

 /* USER CODE END 1 */

 ...

}

...

MEMORY

{

 FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 128K

 DTCMRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 128K

 RAM_D1 (rwx) : ORIGIN = 0x24000000, LENGTH = 512K

 ITCMRAM (rwx) : ORIGIN = 0x00000000, LENGTH = 64K

 RAM_D3 (rwx) : ORIGIN = 0x38000000, LENGTH = 64K

 RAM_D2 (rwx) : ORIGIN = 0x30000000, LENGTH = 288K

 SDRAM (rwx) : ORIGIN = 0xC0000000, LENGTH = 16384K

}

SECTIONS

{

 ...

 .bss :

 {

 ...

 } >RAM_D1

 .sdram_section :

 {

 . = ALIGN(4);

 __SDARAM_START__ = .;

af://n1664

In my STM32H750XBHX_FLASH_NOLOAD.ld:

 *(.sdram)

 (.sdram)

 . = ALIGN(4);

 __SDRAM_END__ = .;

 } >SDRAM

 ._user_heap_stack :

 {

 ...

 } >RAM_D1

 ...

}

MEMORY

{

 FLASH (rx) : ORIGIN = 0x8000000, LENGTH = 128K

 DTCMRAM (rwx) : ORIGIN = 0x20000000, LENGTH = 128K

 RAM_D1 (rwx) : ORIGIN = 0x24000000, LENGTH = 512K

 ITCMRAM (rwx) : ORIGIN = 0x00000000, LENGTH = 64K

 RAM_D3 (rwx) : ORIGIN = 0x38000000, LENGTH = 64K

 RAM_D2 (rwx) : ORIGIN = 0x30000000, LENGTH = 288K

 SDRAM (rwx) : ORIGIN = 0xC0000000, LENGTH = 16384K

}

SECTIONS

{

 ...

 .bss :

 {

 ...

 } >RAM_D1

 .sdram_section (NOLOAD) :

 {

 . = ALIGN(4);

 __SDARAM_START__ = .;

 *(.sdram)

 (.sdram)

 . = ALIGN(4);

 __SDRAM_END__ = .;

 } >SDRAM

 ._user_heap_stack :

 {

 ...

 } >RAM_D1

 ...

}

af://n1679

Test Result

Here is the result of three test cases by using "Build Analyzer" in STM32CubeIDE:

1. Build without myMemoryPool:

2. Build with myMemoryPool but without NOLOAD used in .sdram_section inside linker script
(using STM32H750XBHX_FLASH.ld):

af://n1679

Build Analyzer and CDT Build Console (showing result of arm-none-eabi-size):

Checking HEX file by ST-Link-Utility:

According to ST-LINK-Utility, Hex file contains content from 0xC0000000. This also
leads to large binary file.

According to "Build Analyzer", myMemoryPool is put in .sdram_section according
to "Memory Detail" in Build Analyzer.

According to "Build Analyzer", .sdram_section has VMA.

According to "CDT Build Console", "data" shown by arm-none-eabi-size increases
to 4120 from 24.

3. Build with myMemoryPool and with NOLOAD used in .sdram_section inside linker script
(using STM32H750XBHX_FLASH_NOLOAD.ld):

Build Analyzer and CDT Build Console (showing result of arm-none-eabi-size):

Checking HEX file by ST-Link-Utility:

According to ST-LINK-Utility, Hex file DOES NOT contain content from 0xC0000000.
According to "Build Analyzer", myMemoryPool is put in .sdram_section according
to "Memory Detail" in Build Analyzer.

According to "Build Analyzer", .sdram_section DOES NOT have VMA (like what .bss
does).
According to "CDT Build Console", "bss" shown by arm-none-eabi-size increases to
4120 from 24.

Some additional observations:

1. Comparing arm-none-eabi-size:

(Left: w/o NOLOAD; Right: w/i NOLOAD)

By using --format=SysV, .data and .bss sections have the same size in both cases.

.sdram_section occupies 4096 which is the size of myMemoryPool.

2. Comparing objdump -x:

(Left: w/o NOLOAD; Right: w/i NOLOAD)

.sdram_section is "CONTENTS" when NOLOAD is not used.

af://n1724

3. Comparing readelf -a: (Left: w/o NOLOAD; Right: w/i NOLOAD)

.sdram_section is "PROGBITS" type when NOLOAD is not used and is "NOBITS" type
when NOLOAD is used.

4. Comparing readelf -t:

.sdram_section contains "PROGBITS" flag when NOLOAD is not used and contains
"NOBITS" flags when NOLOAD is used.

Questions from candylife91

1. Where linker put my self-defined section to? for example i defined a sdram_section output
section in the linker script,but i didn't see it in the build output information.

[My answer]:

According to "Build Analyzer" in STM32CubeIDE, customized output section .sdram_section
which contains myMemoryPool is indeed generated. Customized section is indeed NOT
shown in the output of arm-none-eabi-size, it only shows "standard ELF sections (?)"
text/data/bss.

https://community.st.com/s/profile/0050X000008AY96QAG
af://n1755

2. why my uninitialized huge array was put to the data section, from what i understand ,this
data section is for the initialized data use.

[My answer]:

According to "Build Analyzer" in STM32CubeIDE as well as result of using some other tools
(such as objdump and readelf shown above), myMemoryPool is actually put in
.sdram_section and not in either .data or .bss section.

I think the reason you feel myMemoryPool is put in data section is that you refer to the
result generated by arm-none-eabi-size which only shows "standard ELF sections"
text/data/bss as mentioned in my answer #1. I do not know how arm-none-eabi-size
handles the size of something put in customized section. My assumption, however, is that:

arm-none-eabi-size shows the size of data by summing up the size of all symbols put in
.data section along with that in the other sections with flags "CONTENTS, ALLOC, LOAD,
DATA" shown in objdump (such as .preinit_array, init_array, fini_array and
.sdram_section when NOLOAD is NOT used in this case).
Similarly, arm-none-eabi-size shows the size of bss by summing up the size of all
symbols put in .bss section along with that in the other sections with flags "ALLOC" only
(.sdram_section when NOLOAD is used in this case) shown in objdump.

	In My Codes
	Test Result
	Some additional observations:

	Questions from candylife91

