
ST25SDK iOS

Introduction

2

• ST25SDK is a software development kit providing a rich and comprehensive

library to interact with ST25 tags and dynamic tags.

• ST25SDK contains all the necessary classes and abstractions to help the user in

the development of mobile or desktop Java™ applications.

• ST25SDKiOS is the porting of the ST25SDK Java™ into iOS.

• This presentation will illustrate how we used the J2ObjC tool setup to achieve

code sharing between our Android projects and iOS.

• It will show how we installed it and some sample code.

Why sharing code ?

3

• Initially, ST25SDK was written in Java™ for running

applications on any platform supporting JVM

(Windows®, Android™, Linux® and macOS®).

• Porting ST25SDK into iOS has many advantages :

• Code is written once

• Reducing maintenance

• Similar behavior between iOS and on Android.

• Thanks to J2OBJC Tool for converting Java code into

Objective-C code (iOS native language).

ST25SDK

iOS

Android™
j2OBC

J2OBJC What is it ?

4

• It translates Java source code to Objective-C for the iOS (iPhone/iPad) platform.

• Open source google project : ref to https://developers.google.com/j2objc

• Source to Source compiler.

• You need java source code in input. Ex : ST25SDK

• On Android™ you run the java code.

• On iOS™ you run the translated Objective-C code.

https://developers.google.com/j2objc

J2OBJC Example

5

• Here below, a short example of the Java ™ function readSingleBlock

translated into J2OBJC :

J2OBJC

J2OBJC Limitation

6

• Does not handle UI

• Forces Obj-C into project and bridging header between ObjC and Swift

languages(Duh!).

• Java code can use only the translated objects of the JRE.

• Limited 3rd party java libraries.

J2OBJC Requirements

7

• iOS Developement setup : Mac + XCode

• Java™ JDK1.8 or higher version.

• JRE translated into OBJ-C :

• https://github.com/google/j2objc/releases

https://github.com/google/j2objc/releases

ST25SDK iOS

8

• The porting of the ST25SDK into ST25SDKiOS was done in three phases :

1. We run the J2ObjC command line tool to convert the whole ST25SDK Java into Objective-C.

2. Then, we exported every ObjC files into our Xcode project.

3. We used a bridging header in Xcode in order to add Objective-C files to our existing Swift app.

swift

bridgingHeader

1

J2OBJC

2

3

Setting up Xcode 1/3

9

• Open XCode with iOS NFC Tap project.

• Ref to https://www.st.com/content/st_com/en/products/embedded-software/st25-nfc-rfid-

software/stsw-st25ios001.html

• Linking the JRE:

• Navigate to the Build Settings tab and search for Other Linker Flags.

• add: -ljre_emul –liconv. This will link the JRE emulation library.

https://www.st.com/content/st_com/en/products/embedded-software/st25-nfc-rfid-software/stsw-st25ios001.html

Setting up Xcode 2/3

10

• Specifying J2OBJC Home path:

• In order for Xcode to know about the J2OBJC and to compile we need to specify where the

J2OBJC is.

• In the Build Settings hit the + (near the search bar) and select Add User-Defined Setting.

• Name the setting to J2OBJC_HOME and set the value to the J2objC folder

Setting up Xcode 3/3

11

• Updating the Search Path:

• In the Build Settings under Search Paths append to the:

• Framework Search Path: ${J2OBJC_HOME}/frameworks

• Library Search Path: ${J2OBJC_HOME}/lib

• User Header Search Paths: ${J2OBJC_HOME}/include

• At this point, you re ready to use ST25SDKiOS into your project !!!

• After all the setup we’ve reached a place where we can start to be productive. As

you might have seen, J2ObjC will output Objective-C code (Duh!).

• Every ST25SDK Objc are prefixed with Java™ package name.

• Ex : Java™ Class UriRecord in package com.st.st25sdk.ndef

=> ObjC Class ComStSt25sdkNdefUriRecord

• Swift :

• If your project is a Swift project, we need to add a Bridging Header to the project. Next, open

your bridging header and add the following.

• // Import all the Java classes below (ex : for UriRecord.h)

• #import “UriRecord.h"

• As you can see, you need to import all the classes that have been translated from Java

otherwise they will not be visible in Swift.

Calling ST25SDKiOS code

12

ST25SDK iOS App Architecture

13

Application Layers

(Controllers, Models,ST25SDKiOS)

ST25SDK ObjC

(st25sdklib)

iOS Reader Interface

(iOSRFReaderInterface.swift)

CoreNFC API

(iOSIso15693.swift,iOSNdef.swift :

synchronous call)

)

• iOS Application using ST25SDKiOS in composed of four main layers :

• Application Layer :

• Contains User Interface files (controller), Data Model files and Abstraction classes of ST25SDKiOS.

• It uses the ST25SDK ObjC through the Commands, Tags or Helper classes.

• ST25SDK ObjC Layer :

• The ST25SDK transpiled into ObjC.

• iOS ReaderInterface Layer (iOSRFReaderInterface.swift):

• The reader interface is a contract between the ST25SDK Objc library and all reader classes. It ensures

that all readers implement the same command set, making the library reader-independent.

• In the case of iOS™ reader interface, the commands are transmitted to the coreNFC™ API.

• It contains the transceive() method.

• CoreNFC Api Layer (iOSIso15693.swift and iOSNdef.swift):

• Native Interface commands to communicate with the NFC controller present on the smartphone.

As ST25SDK Objc uses Synchronous commands, we have developed the iOSIso15693.swift and

iOSNdef.swift files wrapping Asynchronous CoreNFC functions into Synchronous functions.

ST25SDK iOS Layers

14

• This example shows how to use ST25SDKiOS in an iOS app to read block 0 of

ST25 Type5 Tag (ST25DV or ST25TV).

Code Example1: ReadSingleBlock 1/2

15

• Instantiate then Start a Tag reader session (ref to iOSReaderSession.swift) :

• Create an iOSReaderSession object.

• The iOSReaderSession requires a delegate object that conforms to the

tagReaderSessionViewControllerDelegate protocol.

• Start iOSReaderSession.

• Adopting this protocol allows the

delegate to receive notifications from

the reader session when it:

• Detects a Type5 Tag.

• Encountering an error.

• Whenever iOSReaderSession detects Type5 tag, it calls the delegate method

‘HandleTag’ with the instance of ComStSt25sdkNFCTag and its UID.

• Call the ‘readSingleBlock’ ST25SDK function depending on ST25 Tag type.

Code Example1: ReadSingleBlock 2/2

16

• This example shows how to use ST25SDKiOS in an iOS app to read an NDEF

URI from ST25 NFC Tag.

• !!! Tag MUST at least contains an empty Ndef for enabling the read/write of NDEF

(coreNFC Limitation)!!!

• As coreNFC API comes with its own NDEF structure, we have developed the

‘NDEFManager.swift’ file that converts the coreNFC NDEFs into ST25SDKiOS

NDEFs and vice-versa.

Code Example2: Read NDEF URI 1/3

17

• Instantiate then Start an NDEF reader session (ref to iOSReaderSession.swift) :

• Create an iOSReaderSession object.

• The iOSReaderSession requires a delegate object that conforms to the

ndefReaderSessionViewControllerDelegate protocol.

• Start iOSReaderSession.

• Adopting this protocol allows the

delegate to receive notifications from

the reader session when it:

• Detects a NDEF message.

• Encountering an error.

Code Example2: Read NDEF URI 2/3

18

• Whenever iOSReaderSession reads NDEF message, it calls the delegate method

‘HandleNdef’ with an instance of iOSNdef (ref to iOSNdef.swift).

• Call ‘NDEFManager’ to convert the CoreNFC NDEF into ST25SDK NDEF.

• Use the ST25SDK objects : ‘ComStSt25sdkNDEFMsg’,

‘ComStSt25sdkNdefRecord’ then ‘ComStSt25sdkNdefUriRecord’ to display URI.

Code Example2: Read NDEF URI 3/3

19

• This example shows how to use ST25SDKiOS in an iOS app to write an NDEF

URI to ST25 NFC Tag.

• !!! Tag MUST at least contains an empty Ndef for enabling the read/write of NDEF

(coreNFC Limitation)!!!

• As coreNFC API comes with its own NDEF structure, we have developed the

‘NDEFManager.swift’ file that converts the coreNFC NDEFs into ST25SDKiOS

NDEFs and vice-versa.

Code Example3: Write NDEF URI 1/3

20

• Instantiate then Start an NDEF reader session (ref to iOSReaderSession.swift) :

• Create an iOSReaderSession object.

• The iOSReaderSession requires a delegate object that conforms to the

ndefReaderSessionViewControllerDelegate protocol.

• Start iOSReaderSession.

• Adopting this protocol allows the

delegate to receive notifications from

the reader session when it:

• Detects a NDEF message.

• Encountering an error.

Code Example3: Write NDEF URI 2/3

21

• Whenever iOSReaderSession detects at least an emtpy NDEF message, it calls

the delegate method ‘HandleNdef’ with an instance of iOSNdef (ref to

iOSNdef.swift).

• Create a ST25SDK Uri Record, then add it into a ST25SDK Ndef Message.

• Call ‘NDEFManager’ to convert the ST25SDK NDEF into CoreNFC NDEF.

• Then write coreNFC NDEF message.

Code Example3: Write NDEF URI 3/3

22

• ST25SDKiOS offers the same level of features as ST25SDK Java™ aimed at

accelerating the development process of iOS applications based on ST RF tags.

• Same logic shared between iOS and Android = Same behavior and less divergent

• Shared code = Faster implementation, code once use twice ;)

• iOS NFC Tap comes with ‘wrappers’ and utilities to simplify usage of ST25SDKiOS

within coreNFC Api.

• iOSIso15693.swift & iOSNdef.swift : coreNFC APIs synchronous functions.

• iOSReaderSession.swift : wrapper for coreNFC Tag/Ndef reader session + Handles ST25SDK

Exception errors.

• iOSRFReaderInterface.swift : allows the ST25SDKiOS to abstract the interactions with the

iPhone NFC reader.

• NDEFManager.swift : NDEF helper file to convert coreNFC NDEFs into/from ST25SDK NDEFs

Conclusion

23

• J2OBJC :

• https://developers.google.com/j2objc

• CoreNFC Api :

• https://developer.apple.com/documentation/corenfc

• ST25SDKiOS + iOS NFC Tap source code :

• https://www.st.com/content/st_com/en/products/embedded-software/st25-nfc-rfid-software/stsw-

st25ios001.html

References

24

https://developers.google.com/j2objc
https://developer.apple.com/documentation/corenfc
https://www.st.com/content/st_com/en/products/embedded-software/st25-nfc-rfid-software/stsw-st25ios001.html

