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Introduction
This user manual describes the permanent magnet synchronous motor (PMSM) FOC 
software library, a field oriented control (FOC) firmware library for 3-phase permanent-
magnet motors developed for the STM32F103xx microcontrollers.

These 32-bit, ARM Cortex™-M3 cored ST microcontrollers (STM32F103xx) come with a set 
of peripherals that makes it suitable for performing both permanent-magnet and AC 
induction motor FOC. In particular, this manual describes the STM32F103xx software library 
developed to control surface-mounted or internal, sinewave-driven permanent-magnet 
motors in both torque and speed control mode. These motors may be equipped with an 
encoder, with three Hall sensors or they may be sensorless. The control of an AC induction 
motor equipped with encoder or tacho generator is described in the UM0483 user manual.

The PMSM FOC library is made of several C modules, and is fitted out with IAR EWARM 
5.20, KEIL RealView MDK 3.22a and Green Hills MULTI 5.03 workspaces. It is used to 
quickly evaluate both the MCU and the available tools. In addition, when used together with 
the STM32F103xx motor control starter kit (STM3210B-MCKIT) and PM motor, a motor can 
be made to run in a very short time. It also eliminates the need for time-consuming 
development of FOC and speed regulation algorithms by providing ready-to-use functions 
that let the user concentrate on the application layer. Moreover, it is possible to get rid of any 
speed sensor thanks to the sensorless algorithm for rotor position reconstruction.

A prerequisite for using this library is basic knowledge of C programming, PM motor drives 
and power inverter hardware. In-depth know-how of STM32F103xx functions is only 
required for customizing existing modules and for adding new ones for a complete 
application development.

Figure 1 shows the architecture of the firmware. It uses the STM32F103xx standard library 
extensively but it also acts directly on hardware peripherals when optimizations in terms of 
execution speed or code size are required.

Figure 1. Firmware architecture
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PMSM FOC software library V2.0 features (CPU running at
72 MHz)
● Supported speed feedbacks:

– Sensorless

– 60° or 120° displaced Hall sensors

– Quadrature incremental encoder

● Current-sampling method:

– 2 isolated current sensors (ICS)

– single, common DC link shunt resistor

– 3 shunt resistors placed on the bottom of the three inverter lags

● optimized IPMSM & SM-PMSM drive

● field weakening

● feed-forward, high-performance current regulation

● DAC functionality for tracing the most important software variables

● Brake resistor management

● Speed control mode for speed regulation

● Torque control mode for torque regulation

● 16-bit space vector

– PWM frequency can be easily adjusted

– Centered PWM pattern type

– 11-bit resolution at 17.6 kHz

● Rules for the “a priori” determination of all the parameters necessary for firmware 
customization

● CPU load below 22% in the 3-shunt/sensorless configuration (10 kHz FOC sampling 
rate)

● Code size in 3-shunt/sensorless configuration is about 12.5 Kbytes plus 11.5 Kbytes for 
LCD/joystick management
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1 Getting started with tools

To develop an application for a PM synchronous motor using the PMSM FOC software 
library, you must set up a complete development environment, as described in the following 
sections. A PC running Windows XP is necessary.

1.1 Working environment
The PMSM FOC software library was fully validated using the main hardware boards 
included in STM3210B-MCKIT starter kit (a complete inverter and control board). The 
STM3210B-MCKIT starter kit provides an ideal toolset for starting a project and using the 
library. Therefore, for rapid implementation and evaluation of the software described in this 
user manual, it is recommended to acquire this starter kit.

This library is provided with IAR EWARM v. 5.20, KEIL RVMDK v. 3.22 and Green Hills 
MULTI v. 5.0.3 workspaces. Exhaustive validation was performed using IAR, while simple 
functional validation was done with the other toolchains. You can set up your workspace 
manually for any other toolchain.

1.2 Software tools
A complete software package consists of:

● A third-party integrated development environment (IDE)

● A third-party C-compiler

● JTAG interface for debugging and programming

Using the JTAG interface of the MCU you can enter in-circuit debugging session with 
most of toolchains. Each toolchain can be provided with an interface connected 
between the PC and the target application.

Figure 2. JTAG interface for debugging and programming

The JTAG interface can also be used for in-circuit programming of the MCU. Other 
production programmers can be obtained from third-parties.



UM0492 Getting started with tools

 11/148

1.3 Library source code

1.3.1 Updates

It is highly recommended to check for the latest releases of the library before starting any 
new development, and then to verify from time to time all release notes to be aware of any 
new features that might be of interest for your project. Registration mechanisms are 
available on ST websites to automatically obtain updates.

1.3.2 File structure

The PMSM FOC software library contains workspaces for the previously mentioned 
toolchains. Once the files are unzipped, the following library structure appears, as shown in 
Figure 3.

Figure 3. File structure

The STM32 FOC Firmware Libraries v2.0 folder contains the firmware libraries for running 
3-phase (sensored or sensorless) PMSM and sensored AC induction motors.

The STM32F10xFWLIB folder contains the standard library for the STM32F103xx.

The inc folder contains the header and the src folder contains the source files of the motor 
control library.

Finally, each of the EWARM, RVMDK and MULTI folders contains the configuration files for 
the respective toolchain plus a lib folder that contains the compiled object files of two 
modules: MC_State_Observer and MC_FOC_Methods.
The complete source files are available free of charge from ST on request. Do not hesitate 
to contact your nearest ST sales office or support team.
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1.4 Customizing the workspace for your STM32F103xx derivative
The PMSM FOC software library was written for the STM32F103VB6. However, it works 
equally successfully with all the products in the STM32F103xx performance line family.

Using a different STM32F103xx sales type may require some modifications to the library, 
according to the available features (some of the I/O ports are not present on low-pin count 
packages). Refer to the MCU datasheet for further details.

Also, depending on the memory size, the workspace may have to be configured to fit your 
STM32F103xx MCU derivative.
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2 Introduction to the sensorless FOC of PM motors

2.1 Introduction to the PM synchronous motor FOC drive
This software library is designed to achieve the high dynamic performance in AC 
permanent-magnet synchronous motor (PMSM) control offered by the well-established field 
oriented control (FOC) strategy.

With this approach, it can be stated that, by controlling the two currents iqs and ids, which are 
mathematical transformations of the stator currents, it is possible to offer electromagnetic 
torque (Te) regulation and, to some extent, flux weakening capability.

This resembles the favorable condition of a DC motor, where those roles are held by the 
armature and field currents.

Therefore, it is possible to say that FOC consists in controlling and orienting stator currents 
in phase and quadrature with the rotor flux; this definition makes clear that a means of 
measuring stator currents and the rotor angle is needed.

Basic information on the algorithm structure (and then on the library functions) is 
represented in Figure 4.

● the space vector PWM block (CALC SVPWM) implements an advanced modulation 
method that reduces current harmonics, thus optimizing DC bus exploitation

● the current reading block allows the system to measure stator currents correctly, using 
either cheap shunt resistors or market-available isolated current Hall sensors (ICS)

● the rotor speed/position feedback block allows the system to handle Hall sensor or 
incremental encoder signals in order to correctly acquire the rotor angular velocity or 
position. Moreover, this firmware library provides sensorless detection of rotor 
speed/position, as described in Section 2.2.

● the PID-controller blocks implement proportional, integral and derivative feedback 
controllers (current regulation)

● the Clarke, Park, Reverse Park & Circle limitation blocks implement the mathematical 
transformations required by FOC
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Figure 4. Basic FOC algorithm structure, torque control

Figure 5. Speed control loop

The iqs and ids current components can be selected to perform electromagnetic torque and 
flux control.

On the other hand, Figure 5 shows the speed control loop as well as the whole set of 
specific features offered by this motor control library. See Section 2.1.4, Section 2.3 and 
Section 2.1.5. Section 2.1.4 explains the MTPA (maximum-torque-per-ampere) strategy 
optimized for IPMSM. Section 2.3 explains flux-weakening control, and Section 2.1.5 shows 
how to take advantage of the feed-forward current regulation.
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Each of these features can be set as an option (see Section 4.1), according to the motor 
being used and user needs.

2.1.1 PM motor structures

Mainly, there are two different PM motor constructions available:

a) In the first one, drawing a) in Figure 6, the magnets are glued to the surface of the 
rotor, and this is the reason why it is referred to as SM-PMSM (surface mounted 
PMSM)

b) in the second one, illustrated by drawings b) and c) in Figure 6, the magnets are 
embedded in the rotor structure. This construction is known as IPMSM (interior 
PMSM)

Figure 6. Different PM motor constructions

SM-PMSMs inherently have an isotropic structure, that is, the direct and quadrature 
inductances Ld and Lq are the same. Usually, their mechanical structure allows a wider 
airgap, which in turn means lower flux weakening capability.

On the other hand, IPMSMs show an anisotropic structure (with Ld < Lq, typically), slight in 
the b) construction (called inset PM motor), strong in the c) configuration (called buried or 
radial PM motor); this peculiar magnetic structure can be exploited (as explained in 
Section 2.1.4) to produce a greater amount of electromagnetic torque. their fine mechanical 
structure usually shows a narrow airgap, thus giving good flux weakening capability.

This firmware library is optimized for use in conjunction with SM-PMSMs and IPMSMs. 
machines.
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2.1.2 PMSM fundamental equations

Figure 7. Assumed PMSM reference frame convention

With reference to Figure 7, the motor voltage and flux linkage equations of a PMSM (SM-
PMSM or IPMSM) are generally expressed as:

, where:

● rs is the stator phase winding resistance

● Lls is the stator phase winding leakage inductance

● Lms is the stator phase winding magnetizing inductance; in case of an IPMSM, self and 
mutual inductances have a second harmonic component L2s proportional to cos(2θr + k 
× 2π/3), with k = 0±1, in addition to the constant component Lms(neglecting higher-
order harmonics)

● θr is the rotor electrical angle

● Φm is the flux linkage due to permanent magnets

The complexity of these equations is apparent, as the three stator flux linkages are mutually 
coupled and, what is more, as they are dependent on the rotor position, which is time-
varying and a function of the electromagnetic and load torques.

The reference frame theory simplifies the PM motor equations, by making a change of 
variables that refers the stator quantities abc (that can be visualized as directed along axes 
each 120° apart) to qd components, directed along a 90° apart axes, rotating synchronously 
with the rotor, and vice versa (see Section 5.5 for more details). The d “direct” axis is aligned 
with the rotor flux, while the q “quadrature” axis leads at 90 degrees in the positive rolling 
direction.
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The motor voltage and flux equations are simplified to:

         

         

For an SM-PMSM, the inductances of the d- and q- axis circuits are the same (refer to 
Section 2.1.1), that is we have:

         

On the other hand, IPMSMs show a salient magnetic structure, so their inductances can be 
written as:

         

2.1.3 SM-PMSM field-oriented control (FOC)

The equations below describe the electromagnetic torque of an SM-PMSM:

         

The last equation makes it clear that the quadrature current component iqs has linear control 
on the torque generation, whereas the current component ids has no effect on it (as 
mentioned above, these equations are valid for SM-PMSMs).

Therefore, if Is is the motor rated current, then its maximum torque is produced for iqs = Is 
and ids = 0 (in fact ). In any case it is clear that, when using an SM-PMSM, the 
torque/current ratio is optimized by letting ids = 0. This choice therefore corresponds to the 
MTPA (maximum-torque-per-ampere) control for isotropic motors. See Section 4.1 to find 
out how to set up the library configuration and carry out this strategy.
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On the other hand, the magnetic flux can be weakened by acting on the direct axis current 
ids; this extends the achievable speed range, but at the cost of a decrease in maximum 
quadrature current iqs, and hence in the electromagnetic torque supplied to the load (see 
Section 2.3 for details about the Flux weakening strategy).

In conclusion, by regulating the motor currents through their components iqs and ids, FOC 
manages to regulate the PMSM torque and flux; current regulation is achieved by means of 
what is usually called a “synchronous frame CR-PWM”.

2.1.4 IPMSM maximum torque per ampere (MTPA) control

The electromagnetic torque equation of an IPMSM is:

         

         

The first term in this expression is the PM excitation torque. The second term is the so-
called reluctance torque, which represents an additional component due to the intrinsic 
salient magnetic structure. Besides, since Ld < Lq typically, reluctance and excitation torques 
have the same direction only if ids < 0.

Considering the torque equation, it can be pointed out that the current components iqs and 
ids both have a direct influence on torque generation.

The aim of the MTPA (maximum-torque-per-ampere) control is to calculate the reference 
currents (iqs, ids) which maximize the ratio between produced electromagnetic torque and 
copper losses (under the condition: ).

Therefore, given a set of motor parameters (pole pairs, direct and quadrature inductances 
Ld and Lq, magnets flux linkage, nominal current) the MTPA trajectory is identified as the 
locus of (iqs, ids) pairs that minimizes the current consumption for each required torque (see 
Figure 8).
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Figure 8. MTPA trajectory

Section 4.1 explains how this feature is activated. By inputting the motor parameters into a 
spreadsheet included in the firmware library package (the file location is STM32MC-
KIT\design tools\ PMSM_MTPA_FEEDFORWARD.xls), it is possible to precalculate the 
MTPA trajectory and insert the result, as coefficients of an 8-interval linear interpolation, into 
the proper parameter header file (see details in Section 4.6.4).

Figure 9 shows an actual implementation. The MTPA strategy is implemented inside a 
speed-control loop. In that case, iq* (output of the PI regulator) is fed to the MTPA function, 
id* is chosen by entering the linear interpolated trajectory.

Figure 9. MTPA control

In any case, by acting on the direct axis current ids, the magnetic flux can be weakened so 
as to extend the achievable speed range. As a consequence of entering this operating 
region, the MTPA path is left (see Section 2.3 for details about the flux-weakening strategy).

In conclusion, by regulating the motor currents through their iqs and ids components, FOC 
manages to regulate the PMSM torque and flux. Current regulation is then achieved by 
means of what is usually called a “synchronous frame CR-PWM”.
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2.1.5 Feed-forward current regulation

The feed-forward feature provided by this firmware library aims at improving the 
performance of the CR-PWM (current-regulated pulse width modulation) part of the motor 
drive.

Basically, it calculates in advance the vq* and vd* stator voltage commands required to feed 
the motor with the iq** and id** current references. By doing so, it backs up the standard PID 
current regulation (see Figure 10).

The feed-forward feature works in the synchronous reference frame and requires good 
knowledge of some machine parameters, such as the winding inductances Ld and Lq (or Ls 
if an SM-PMSM is used) and the motor voltage constant Ke.

The feed-forward algorithm has been designed to compensate for the frequency-dependent 
back emf’s and cross-coupled inductive voltage drops in permanent magnet motors. As a 
result, the q-axis and d-axis PID current control loops become linear, and a high 
performance current control is achieved.

As a further effect, since the calculated stator voltage commands vq* and vd* are 
compensated according to the present DC voltage measurement, a bus voltage ripple 
compensation is accomplished.

Figure 10. Feed-forward current regulation

Depending on some overall system parameters, such as the DC bulk capacitor size, 
electrical frequency required by the application, motor parameters etc., the feed-forward 
functionality could bring a major or a poor contribution to the motor drive. It is therefore 
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recommended that the user assess the resulting system performance and enable the 
functionality only if a valuable effect is measured.

See Section 4.1 for details on activating the feed-forward feature, Section 4.6 for how to 
insert the required parameters into the proper header file (by using the 
PMSM_MTPA_FEEDFORWARD.xls spreadsheet provided in STM32MC-KIT\design 
tools\) and, Section 5.4 for the functional description and prototypes of the available 
functions.

2.2 Introduction to sensorless rotor position / speed feedback
In Section 2.1 it has been shown that rotor position / speed measurement has a crucial role 
in PMSM field oriented control. Hall sensors or encoders are broadly used in the control 
chain for that purpose.

Sensorless algorithms for rotor position / speed feedback are considered very useful and for 
different reasons: to lower the overall cost of the application, to enhance the reliability by 
redundancy, etc.

This firmware library provides a complete solution for sensorless detection of rotor position / 
speed feedback, which is based on the state observer theory. The implemented algorithm is 
applicable to both SM-PM and IPM synchronous motors, as explained in [5] (Appendix A.9: 
References). A theoretical and experimental comparison between the implemented rotor 
flux observer and a classical VI estimator [6](Appendix A.9: References) has pointed out the 
observer's advantage, which turns out to be a clearly reduced dependence on the stator 
resistance variation and an overall robustness in terms of parameter variations.

A state observer, in control theory, is a system that provides an estimation of the internal 
state of a real system, given its input and output measurement.

In our case, the internal states of the motor are the back-emfs and the phase currents, while 
the input and output quantities supplied are the phase voltages and measured currents, 
respectively (see Figure 11).

DC bus voltage measurement is used to convert voltage commands into voltage applied to 
motor phases.
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Figure 11. General sensorless algorithm block diagram

In particular, the observed states are compared for consistency with the real system via the 
phase currents, and the result is used to adjust the model through a gain vector (K1, K2).

The motor back-emfs are defined as:

As can be seen, they hold information about the rotor angle. Then, back-emfs are fed to a 
block which, acting as a PLL, is able to reconstruct the rotor electrical angle and speed.

Figure 12 shows a scope capture taken while the motor is running in field oriented control 
(positive rolling direction); the yellow and the red waveforms (C1,C2) are respectively the 
observed back-emfs alpha and beta, the blue square wave (C3) is a signal coming from a 
Hall sensor cell placed on the a-axis, the green sinewave is current ia (C4).

eα Φmpωr pωrt( )
eβ Φmpωr pωrt( )sin–=

cos=
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Figure 12. PMSM back-emfs detected by the sensorless state observer algorithm

More information on how to set parameters to make the firmware suit the user’s motor could 
be found in Section 4.5.

2.3 Introduction to flux-weakening control
The purpose of the flux-weakening functionality is to expand the operating limits of a 
permanent-magnet motor by reaching speeds higher than rated, as many applications 
require under operating conditions where the load is lower than rated. Here, the rated speed 
is considered to be the highest speed at which the motor can still deliver maximum torque.

The magnetic flux can be weakened by acting on direct axis current id; given a motor rated 
current In, such that , if we choose to set id ≠ 0, then the maximum available 
quadrature current iq is reduced. Consequently, in case of an SM-PMSM, as shown in 
Section 2.1.3, the maximum deliverable electromagnetic torque is also reduced. On the 
other hand, for an IPM motor, acting separately on id causes a deviation from the MTPA path 
(as explained in Section 2.1.4).

“Closed-loop” flux weakening has been implemented. Accurate knowledge of machine 
parameters is not required, which strongly reduces sensitivity to parameter deviation (see 
[3]-[4] in Appendix A.9: References). This scheme is suitable for both IPMSMs and SM-
PMSMs.

The control loop is based on stator voltage monitoring (Figure 13 shows the diagram).

The current regulator output Vs is checked against a settled threshold (“voltage level*” 
parameter). If Vs is beyond that limit, the flux-weakening region is entered automatically by 
regulating a control signal, ifw*, that is summed up to ids*, the output of the MTPA controller. 
This is done by means of a PI regulator (whose gain can be tuned in real time as explained 
in Section 3.4) in order to prevent the saturation of the current regulators. It clearly appears, 
then, that the higher the voltage level* parameter is settled (by keeping up current 
regulation), the higher the achieved efficiency and maximum speed.

If Vs is smaller than the settled threshold, then ifw decreases to zero and the MTPA block 
resumes control.

In iq
2 id

2
+=
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The current ids** output from the flux-weakening controller must be checked against ids max 
to avoid the demagnetization of the motor.

Figure 13. Flux-weakening operation scheme 

See Section 4.1, Section 4.6 and Section 5.4, respectively, about the activation of the flux-
weakening feature, inserting the required parameters into the proper header file, and the 
functional description and prototypes of the available functions.



UM0492 Running the demo program

 25/148

3 Running the demo program

3.1 Torque control mode
Figure 14, Figure 15 and Figure 16 show a few LCD menus for setting control parameters 
when in Torque Control mode. The parameter highlighted in red color is the one that can be 
set and its value can be modified by acting on the joystick key.

Moving the joystick up/down selects the active control mode (in the example shown in 
Figure 14, it is Torque control). Once the motor Start command has been issued (by 
pressing the JOY or KEY key), this parameter is no longer accessible. It becomes 
accessible again when the motor is stopped.

Figure 14. LCD screen for Torque control settings

From the previous screen (Figure 14), if the joystick is moved to the right, the Target Iq 
current component becomes highlighted (in red). This parameter can now be modified by 
moving the joystick up/down. Once the motor Start command has been issued, Target Iq 
can be changed in runtime while the measured Iq current component is shown in the 
Measured field.

Figure 15. LCD screen for Target Iq settings

From the previous screen (Figure 15), if the joystick is moved to the right, the Target Id 
current component becomes highlighted (in red). This parameter can now be modified by 
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moving the joystick up/down. Once the motor Start command has been issued, the Target Id 
can be changed in runtime while the measured Id current component is shown in the 
Measured field.

Figure 16. LCD screen for Target Id settings

The motor is stopped (main state machine moves from Run to Stop state) by pressing either 
the KEY button or the joystick.

Different motor ramp-up strategies are used in torque control mode depending on the kind of 
configuration utilized for the speed / position feedback:

● ENCODER or VIEW_ENCODER_FEEDBACK uncommented in the configuration file 
stm32f10x_MCconf.h. In this case a rotor pre-positioning phase (also called alignment) 
is necessary in order to make absolute the otherwise relative position information fed 
back by the quadrature encoder. This alignment phase is performed only at first startup 
after any detected microcontroller fault event or reset. Refer to Section 4.3 for a deeper 
description of this procedure.

After the rotor pre-positioning is performed, if ENCODER is uncommented, the variables 
containing the target value of the Iq and Id stator current components (respectively 
hTorque_Reference and hFlux_Reference) are initialized with the values 
PID_TORQUE_REFERENCE and PID_FLUX_REFERENCE defined in the header file 
MC_Control_Param.h; the main state machine switches from the Start to the Run state. 
On the other hand, if VIEW_ENCODER_FEEDBACK is uncommented, the ramp-up 
strategy related to the sensorless operation starts just after the end of the pre-
positioning.

● HALL_SENSORS is uncommented in the stm32f10x_MCconf.h configuration file. In this 
case no rotor pre-positioning is performed and the hTorque_Reference software 
variable is simply initialized with the PID_TORQUE_REFERENCE value defined in the 
MC_Control_Param.h header file. The software variable containing the electrical rotor 
angle is initialized based on the digital value of the three Hall sensor outputs, and the 
main state machine switches from the Start to the Run state.

● NO_SPEED_SENSORS is uncommented in stm32f10x_MCconf.h. In case of sensorless 
motor driving, a particular ramp-up is necessary in order to make the rotor move and 
the sensorless algorithm converge to the actual rotor position. A deeper description of 
the ramp-up procedure is described in Section 4.5.
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3.2 Speed control mode
Figure 17 and Figure 18 show two LCD menus used to set control parameters when in 
Speed control mode. The parameter highlighted in red color is the one that can be set and 
its value can be modified by acting on the joystick key.

From the menu screen shown in Figure 17, it is possible to switch from Torque control to 
Speed control operations (and vice versa) by moving the joystick up/down while the motor is 
stopped.

Figure 17. Speed control main settings

From the menu screen shown in Figure 18, moving the joystick to the right selects the Target 
speed (parameter highlighted in red). Once selected, the parameter can be 
incremented/decremented by moving the joystick up/down. The motor can then be started 
simply by pressing the joystick. When the motor is on, the target speed can still be modified.

Figure 18. LCD screen for setting Target speed

Like in the torque control mode, the motor is started/stopped by pressing the joystick or the 
KEY button.

Since in speed control mode, the torque and flux parameters (Target Iq and Target Id) are 
the outputs of the Torque and flux controller, they cannot be set directly. The PID regulators 
can however be real-time tuned as explained below.
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Different motor ramp-up strategies are used in speed control mode depending on the kind of 
configuration utilized for the speed / position feedback:

● ENCODER or VIEW_ENCODER_FEEDBACK uncommented in the stm32f10x_MCconf.h 
configuration file. As already stated in the previous paragraph, a rotor pre-positioning 
phase (also called alignment) is necessary in this case. Refer to Section 4.3 for a 
deeper description of this procedure.

After the rotor pre-positioning is performed, if ENCODER is uncommented the variables 
containing the target values of the Iq and Id current components (hTorque_Reference 
and hFlux_Reference, respectively) are driven by the torque and flux controller 
block and the main state machine switches from the Start to the Run state. On the 
other hand, if VIEW_ENCODER_FEEDBACK is uncommented, the ramp-up strategy 
related to the sensorless operation starts just after the end of the pre-positioning.

● HALL_SENSORS is uncommented in the stm32f10x_MCconf.h configuration file. The 
hTorque_Reference software variable is driven by the flux and torque controller block 
from the moment the start command is given. The software variable containing the 
electrical rotor angle is also initialized based on the digital value of the three Hall 
sensor outputs at that moment. Finally, the main state machine switches from the Start 
to the Run state.

● NO_SPEED_SENSORS is uncommented in stm32f10x_MCconf.h. In case of sensorless 
motor driving, a particular ramp-up is necessary in order to make the rotor move and 
the sensorless algorithm converge to the actual rotor position. A more detailed 
description of the ramp-up procedure is described in Section 4.5. 

3.3 Currents and speed regulator tuning
As already exposed in Section 2.1, the Iq and Id currents regulation is achieved by mean of 
two PID controllers where the derivative action can be optionally disabled by uncommenting 
the definition of DIFFERENTIAL_TERM_ENABLED in stm32f10x_MCconf.h. Next figures 
show the two LCD menus allowing the real-time tuning of the proportional, integral and in 
case it is present derivative gains:

Figure 19 shows the screen used to select either of the torque PID coefficients whereas 
Figure 20 shows the screen used to select either of the flux PID coefficients. From both 
screen, either of the P, I or D (when present) coefficient can be selected (highlighted in red) 
by moving the joystick to the right/left. Then, each value can be changed (incremented or 
decremented) by pressing the joystick up/down.

Figure 19. LCD screen for setting the P term of torque PID
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Figure 20. LCD screen for setting the P term of flux PID

Moreover, to achieve speed regulation in speed control mode, a PI(D) is also implemented 
inside the torque and flux controller block. The tuning of its related gains can be done in real 
time by means of the dedicated LCD menu:

Figure 21. LCD screen for setting the P term of the speed PID

Like for the previous menus, either of the P, I or D (when present) coefficients can be 
selected (highlighted in red) by moving the joystick to the right/left. The desired values can 
then be changed (incremented or decremented) by pressing the joystick up/down.

3.4 Flux-weakening PI controller tuning
This menu is available if the flux-weakening functionality has been enabled in the 
stm32F10x_MCconf.h file (see Section 2.3 and Section 4.1).

It is used to real-time tune the proportional and integral gains of the PI regulator used inside 
the flux-weakening block.

Either of the P coefficient, I coefficient or the target stator voltage Vs can be selected 
(highlighted in red) by moving the joystick to the right/left. The desired values can then be 
changed (incremented or decremented) by pressing the joystick up/down. Figure 22 shows 
the screen used for the tuning operation.
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Figure 22. LCD screen for setting the P term of the flux-weakening PI 

The target and measured stator voltages ( ) are shown in the lower part of the 
screen as a percentage of the maximum available phase voltage.

3.5 Observer and PLL gain tuning
In the default configuration of the firmware library, the tuning of the sensorless algorithm is 
disabled. Nevertheless, when the OBSERVER_GAIN_TUNING definition is not commented in 
the stm32F10x_MCconf.h configuration header file, a dedicated menu is shown on the LCD.

Figure 23. LCD screen for setting the P term of the flux PID

When the menu shown in Figure 23 is displayed, the joystick can be moved to the right/left 
to navigate between the different gains. Pressing the joystick up/down will 
increment/decrement the gain highlighted in red color.

This menu is used to change both the observer and the PLL gains in real time. This feature 
is particularly useful when used in conjunction with the DAC functionality and with a 
firmware configuration handling either Hall effect sensors or an encoder. In this way, it is 
possible to modify the observer and PLL gains by looking for example at both the observed 
and measured rotor electrical angle and by adjusting the gains so as to cancel any error 
between the two waveforms.
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3.6 DAC functionality
When enabled in the stm32F10x_MCconf.h, the DAC functionality is a powerful debug tool 
which allows the simultaneous tracing of up to two software variables selectable in real time 
using a dedicated menu.

Figure 24. LCD screen for setting the P term of the flux PID

When the menu shown in Figure 24 is displayed, the joystick can be moved to the right/left 
to select the desired microcontroller pin. To change the software variable in output, move the 
joystick up/down (the list of the available variables depends on the selected firmware 
configuration). For all other menus, pressing the joystick or the Key button will cause the 
motor to start/stop.
It is also possible to add two user-defined variables to the default list, by placing the 
following code lines:

...

#include "stm32f10x_MClib.h"

...

MCDAC_Update_Value(USER_1,variable_name1);

MCDAC_Update_Value(USER_2,variable_name2);

...

These variables are shown in output if “User 1” or “User 2” are selected on the display. 
Variable tracing is turned on if the demo program is in the START/RUN states. The variable 
update frequency is fixed by the sampling rate of the FOC algorithm (see Section 4.2 for 
details).

The DAC functionality was implemented in the presented firmware library by using two out 
of the four TIM3 output compare channels (PB0 and PB1 pins) and by modulating the duty 
cycle of the generated 30 kHz PWM signal. In order to properly filter the generated signals 
without introducing important delays on the waveforms, it is suggested to use a proper first-
order low-pass filter (e.g. with a 10 kΩ resistor and a 22 nF capacitor). Furthermore, if a 
High-density performance line (that is an STM32F103xC, STM32F103xD or STM32F103xE 
derivative) MCU is used, the user can exploit the built-in 2-channel, 12-bit D/A converter by 
suitably modifying the stm32f10x_MCdac.c file.
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3.7 Power stage feedbacks
A dedicated menu was designed to show the value in volts of the DC bus voltage and the 
temperature of the STM3210B-MCKIT power board heat sink:

Figure 25. Power stage status

3.8 Fault messages
This section provides a description of all the possible fault messages that can be detected 
when using the software library together with the STM3210B-MCKIT. Figure 26 shows a 
typical error message as displayed on the LCD.

Figure 26. Error message shown in the event of an undervoltage fault

The message “Press ‘Key’ to return to menu” is visible only if the source of the fault has 
disappeared. In this case, pressing the ‘Key’ button causes the main state machine to switch 
from the Fault to the Idle state.

There are six different fault sources when using the firmware library in conjunction with the 
STM3210B-MCKIT:

3.8.1 Overcurrent

A low level was detected on the PWM-peripheral-dedicated pin (BKIN). If the STM3210B-
MCKIT is being used, this means that either the hardware overtemperature protection or the 
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hardware overcurrent protection has been triggered. Refer to the STM3210B-MCKIT user 
manual for details.

3.8.2 Overheating

An overtemperature was detected on the dedicated analog channel. The intervention 
threshold (NTC_THRESHOLD_C) and the related hysteresis (NTC_HYSTERESIS_C) are 
specified in the MC_Control_Param.h header file. Refer to the STM3210B-MCKIT user 
manual for details.

3.8.3 Bus overvoltage

Available only if the BRAKE_RESISTOR definition is commented (default) in 
stm32f10x_MCconf.h configuration header file. It means that an overvoltage was detected 
on the dedicated analog channel. The intervention threshold 
(OVERVOLTAGE_THRESHOLD_V) is specified in the MC_Control_Param.h header file. Refer 
to STM3210B-MCKIT user manual for details.

Note: If the BRAKE_RESISTOR definition is not commented in stm32f10x_MCconf.h, it is assumed 
that a resistor with a high power dissipation capability was connected in parallel to the bus 
capacitors through a switch. In this case the overvoltage does not generate a FAULT event 
because the resistor is supposedly able to dissipate the excess of voltage across the bus 
capacitors. For more detailed information on brake resistor management see also 
Section 3.14.

3.8.4 Bus undervoltage

The bus voltage is below 20 V DC. This threshold is specified in the MC_Control_Param.h 
header file by the UNDERVOLTAGE_THRESHOLD_V parameter. Refer to STM3210B-MCKIT 
user manual for details.

3.8.5 Startup failed

Available only when NO_SPEED_SENSORS is not commended. It signals that no startup 
output condition was detected during motor ramp-up (FREQ_START_UP_DURATION in 
MC_State_Observer_param.h). See also Section 4.5.2.

3.8.6 Error on speed fdbck

An error on the speed / position feedback was noticed. Depending on the utilized kind of 
feedback this could mean that:

● if an encoder is being used, the measured speed was out of the allowed range 
([MINIMUM_MECHANICAL_SPEED_RPM; MAXIMUM_MECHANICAL_SPEED_RPM]) for a 
consecutive number of times equal to or higher than MAXIMUM_ERROR_NUMBER (all 
these parameters can be found in MC_encoder_param.h). For instance, this could 
mean that the encoder connection was lost. See also Section 4.3.

● in case of a Hall sensors configuration, the timer utilized for interfacing with the three 
Hall effect sensors overflowed for HALL_MAX_OVERFLOWS (MC_hall_param.h) 
consecutive times, as mentioned in Section 4.4 and explained in Section 5.7. This 
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usually indicates that information has been lost (Hall sensor timeout) or that speed is 
decreasing very sharply.

● in case of sensorless operation, the quality of the speed measurement expressed in 
terms of the distribution around the mean value is not good. This typically means that 
either the observer is not properly tuned or that the speed is so low that a good 
observation of the induced B-emf is not possible (e.g. rotor is locked). Refer also to 
Section 4.5.3.

3.9 Setting up the system when in single-shunt topology and
using the MB459B power board
To set up the MB459B power board for the single-shunt topology, the only required operation 
is to move the wires present in the W4, W5 and W10 place holders as shown in Figure 27:

● W4 open

● W5 closed

● W10 between 1-2 (unlike in the silkscreen)

Figure 27. MB459B power board setup for the single-shunt topology

3.10 Setting up the system when using ICSs
The default configuration provides for the use of three shunt resistors and no speed sensor. 
This section gives you information about how to provide the STM32F103xx with ICS 
feedback signals and to properly customize the firmware.

Caution: When using two ICSs for stator current reading, you must ensure that the conditioned 
sensors output signal range is compatible with the STM32F103xx supply voltage.

In order for the implemented FOC algorithm to work properly, it is necessary to ensure that 
the software implementation of the stm32f10x_svpwm_ics module and the hardware 
connections of the two ICSs are consistent. 

As illustrated in Figure 28, the two ICSs must act as transducers on motor phase currents 
coming out of the inverter legs driven by STM32F103xx PWM signals PWM1 (Phase A) and 

W5 W5

W4 W4

W10 W10

(Three shunt) (Single shunt)

ai15153
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PWM2 (Phase B). In particular, the current coming out of inverter Phase A must be read by 
an ICS whose output has to be sent to the analog channel specified by the 
PHASE_A_ADC_CHANNEL parameter in MC_pwm_ics_prm.h. Likewise, the current 
coming out of inverter Phase B must be read by the other ICS and its output has to be sent 
to the analog channel specified by the PHASE_B_ADC_CHANNEL parameter in 
MC_pwm_ics_prm.h.

About the positive current direction convention, a positive half-wave on 
PHASE_X_ADC_CHANNEL is expected, corresponding to a positive half-wave on the 
current coming out of the related inverter leg (see direction of I in Figure 28).

Note: Firmware support of ICS current measurement is enabled as explained in Section 4.1. 
Using ICS allows the MMI to be set to 100% (#define 
MAX_MODULATION_100_PER_CENT, see Section 4.2 and Section 5.5.3).

Figure 28. ICS hardware connections

3.10.1 Selecting PHASE_A_ADC_CHANNEL and
PHASE_B_ADC_CHANNEL

Default settings for PHASE_A_ADC_ CHANNEL and PHASE_B_ADC_CHANNEL are 
respectively ADC_CHANNEL11 and ADC_CHANNEL12. You can change the default settings if 
the hardware requires it by editing the “Current reading parameters” section of the 
MC_pwm_ics_prm.h file. 

As an example, in order to convert Phase X (X =A, B) current feedback on ADC channel 0, 
the related parameters must be edited as shown below:

#define PHASE_X_ADC_CHANNEL     ADC_Channel_0

#define PHASE_X_GPIO_PORT          GPIOA

#define PHASE_X_GPIO_PIN             GPIO_Pin_0

3.11 Setting up the system when using an encoder
Quadrature incremental encoders are widely used to read the rotor position of electric 
machines.
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As the name implies, incremental encoders actually read angular displacements with 
respect to an initial position: if that position is known, then the rotor absolute angle is known 
too. For this reason it is always necessary, when processing the encoder feedback 
(ENCODER or VIEW_ENCODER_FEEDBACK definitions not commented in 
stm32f10x_MCconf.h), to perform a rotor prepositioning before the first startup after any 
fault event or microcontroller reset.

Quadrature encoders have two output signals (represented in Figure 29 as TI1 and TI2). 
With these, and with the STM32F103xx standard timer in encoder interface mode, it is 
possible to get information about the rolling direction.

Figure 29. Encoder output signals: counter operation

In addition, the rotor angular velocity can be easily calculated as a time derivative of the 
angular position.

To set up the PMSM FOC software library for use with an incremental encoder, simply 
modify the stm32f10x_MCconf.h and MC_encoder_param.h header files according to 
the indications given in Section 4.1 and Section 4.3, respectively.

However, some extra care should be taken, concerning what is considered to be the positive 
rolling direction: this software library assumes that the positive rolling direction is the rolling 
direction of a machine that is fed with a three-phase system of positive sequence.

Because of this, and because of how the encoder output signals are wired to the 
microcontroller input pins, it is possible to have a sign discrepancy between the real rolling 
direction and the direction that is read. To avoid this kind of reading error, apply the following 
procedure:

1. Turn the rotor by hand in the direction assumed to be positive and look at the B-emf 
induced on the three motor phases. For this purpose, a neutral point may need to be 
reconstructed with three resistors if the real one is not available.

2. Connect the motor phases to the hardware respecting the positive sequence (for 
instance when using the MB459 board, a positive sequence of the motor phases may 
be connected to J5 2,1 and 3).

3. Run the firmware in encoder configuration and turn by hand the rotor in the direction 
assumed to be positive. If the measured speed shown on the LCD is positive, the 
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connection is correct, otherwise, it can be corrected by simply swapping and rewiring 
the encoder output signals.

If this is not practical, a software setting may be modified instead: in the 
stm32f10x_encoder.c file, replace the code line 164:

TIM_ICPolarity_Rising, TIM_ICPolarity_Rising);

by

TIM_ICPolarity_Rising, TIM_ICPolarity_Falling);

3.12 Setting up the system when using Hall-effect sensors
Hall-effect sensors are devices capable of sensing the polarity of the rotor’s magnetic field; 
they provide a logic output, which is 0 or 1 depending on the magnetic pole they face and 
thus, on the rotor position.

Typically, in a three-phase PM motor three Hall-effect sensors are used to feed back the 
rotor position information. They are usually mechanically displaced by either 120° or 60° and 
the presented firmware library was designed to support both possibilities. To set up the 
PMSM FOC software library for use with three Hall sensors, simply modify the 
stm32f10x_MCconf.h and MC_hall_param.h header files according to the indications given 
in Section 4.1 and Section 4.4, respectively.

As shown in Figure 30, the typical waveforms can be visualized at the sensor outputs in 
case of 60° and 120° displaced Hall sensors. More particularly, Figure 30 refers to an 
electrical period (i.e. one mechanical revolution in case of one pole pair motor).

Figure 30. 60° and 120° displaced Hall sensor output waveforms

Since the rotor position information they provide is absolute, there is no need for any initial 
rotor prepositioning. Particular attention must be paid, however, when connecting the 
sensors to the proper microcontroller inputs.

In fact, as stated in Section 3.11, this software library assumes that the positive rolling 
direction is the rolling direction of a machine that is fed with a three-phase system of positive 
sequence. In that case to properly work, the software library expects the Hall sensor signal 
transitions to be in the sequence shown in Figure 30 for both 60° and 120° displaced Hall 
sensors.

For these reasons, it is suggested to follow the instructions given below when connecting a 
Hall-sensor equipped PM motor to your board:
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1. Turn the rotor by hand in the direction assumed to be positive and look at the B-emf 
induced on the three motor phases. For this purpose if the real neutral point is not 
available, it can be reconstructed by means of three resistors for instance.

2. Connect the motor phases to the hardware respecting the positive sequence. Let 
“Phase A”, “Phase B” and “Phase C” be the motor phases driven by TIM1_CH1, 
TIM1_CH2 and TIM1_CH3, respectively (e.g. when using the MB459 board, a positive 
sequence of the motor phases could be connected to J5 2,1 and 3).

3. Turn the rotor by hand in the direction assumed to be positive, look at the three Hall 
sensor outputs (H1, H2 and H3) and connect them to the selected timer on channels 1, 
2 and 3, respectively, making sure that the sequence shown in Figure 30 is respected.

4. Measure the delay in electrical degrees between the maximum of the B-emf induced on 
Phase A and the first rising edge of signal H1. Enter it in the MC_hall_param.h header 
file (HALL_PHASE_SHIFT). For your convenience, an example with 
HALL_PHASE_SHIFT equal to –90 °C is illustrated in Figure 31.

Figure 31. Determination of Hall electrical phase shift

3.13 Progressive sensorless system development
In order to simplify sensorless development, a process was defined when designing the 
presented firmware library. This process is a 4-step path that takes the user in a very short 
time to the final achievement of running the motor without either speed or position feedback 
sensors.

The defined process is based on the hypothesis that within the development stage of 
design, the user can count on speed / position rotor information coming from either the Hall 
sensors or the encoder. If not possible or not convenient in the application, it is anyway 
sufficient to mechanically couple the shaft of the motor to the one of the motor mounting 
sensors (e.g. the BLDC motor provided in the STM3210B-MCKIT). This feedback 
information is actually necessary mainly for the purpose of comparing the rotor position 
information observed by the sensorless algorithm to the real one. In this way, the sensorless 
algorithm can be fine tuned.

As mentioned above, the path consists of 4 steps listed and described below:
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1. Run the motor in a pure sensor configuration:

To this purpose, you should:

– Tune the Iq and Id current loop regulator gains by following the instructions given 
in appendix A.4 and A.5

– Comment FLUX_TORQUE_PIDs_TUNING, run the motor in speed control and 
tune the speed PI(D) gains. Derivative action can be enabled / disabled by 
uncommenting / commenting the DIFFERENTIAL_TERM_ENABLED line in 
stm32f10x_MCconf.h.

2. Run the motor in sensor mode and tune the observer gains

The Clark and Parke transformation blocks and the speed regulator will utilize the rotor 
position and speed information read by the sensor. The sensorless algorithm will be 
run in parallel. To this purpose it is necessary to:

– Precompute initial observer gains following the instructions provided in appendix 
A.6

– Uncomment OBSERVER_GAIN_TUNING in stm32f10x_MCconf.h.

– Fill in MC_PMSM_motor_param.h (see Section 4.6) and 
MC_State_Observer_param.h (startup section not required in this step, see 
Section 4.5)

– Real-time tune observer gains by visually comparing (through DAC functionality) 
the observed and real Iα and Iβ (error must be null) and by making sure that the 
observed B-emf waveforms are as clean and sinusoidal as possible. Real-time 
tuning of PLL gains should not be required but, in case, proportionally increase Kp 
and Ki to enlarge the PLL bandwidth (quickness to speed variation) and vice versa

– Once the 4 gains have been found, write them in MC_State_Observer_param.h 

3. Run the motor in sensorless mode processing the sensor feedback:

The transformation blocks and the speed regulator will utilize the rotor position and 
speed information coming from the sensorless algorithm (“observed value”). The real 
(measured) information coming from the real sensors are processed for comparison 
with the observed ones.

With this aim it is necessary to:

– Uncomment NO_SPEED_SENSORS and a definition between 
VIEW_HALL_FEEDBACK and VIEW_ENCODER_FEEDBACK (depending on the 
sensor you are using)

– Fill startup section of MC_State_Observer_param.h and relax at first statistic 
parameters if motor cannot start with different current and frequency startup 
parameters (“Error on speed fdbck” or “Start-up failed” faults)
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Note: Be aware that due to the different speed resolution/accuracy, a different setup for speed PID 
could be necessary.

– Tune startup parameters performing different ramp-up trials and, if required, 
further tune observer and PLL gains

4. Congratulations! The motor can now run in pure sensorless mode:

Depending on the requirements of the used debug feature, on the expected code size 
and CPU load you could:

– Comment VIEW_HALL_FEEDBACK or VIEW_ENCODER_FEEDBACK (depending on 
which was not commented) in stm32f10x_MCconf.h

– Comment OBSERVER_GAIN_TUNING in stm32f10x_MCconf.h

– Comment DAC_FUNCTIONALITY in stm32f10x_MCconf.h

3.14 Setting up the system when using a brake resistor
Due to its physical construction, a PM synchronous motor is able to transform kinetic energy 
into electrical energy just like a dynamo.

Under a limited number of conditions this property of PM synchronous motors has to be 
taken into consideration to avoid possible damage to the hardware system. For instance, a 
dangerous situation could arise when: 

● The six inverter switches are opened and the motor is running at a speed higher than 
the nominal one. In this case, the amplitude of the line-to-line B-emf generated is 
higher than the nominal bus voltage

● The control tries to brake, an energy transfer from the load to the board occurs

Unless the used power system has regenerative capabilities, in both of these situations the 
inverter bulk capacitor is charged. Furthermore, depending on the rotor speed (with 
reference to the first situation) or on the amount of energy transferred (with reference to the 
second situation), the voltage across the bulk capacitors could increase to a destructive 
level. 

A strategy for somehow dissipating the generated electrical energy is thus necessary. 
Different methods could be implemented to do so, but one of them in particular, the 
utilization of a brake resistor, is supported by the library presented in this user manual.

Caution: If the motor is operated beyond the rated speed, it is mandatory to use a regenerative power 
converter or a brake resistance to prevent bus overvoltage from damaging your board.

3.14.1 How to configure the FOC software library for brake resistor
management

To enable the management of the brake resistor on the STM32F103xx PMSM FOC 
firmware library, simply uncomment the definition of BRAKE_RESISTOR in the 
stm32f10x_MCconf.h header file.

The analog watchdog feature of the STM32F103xx allows to generate an interrupt whenever 
the bus voltage goes above the OVERVOLTAGE_THRESHOLD_V parameter specified in 
MC_Control_Param.h and as a consequence, the BRAKE_GPIO_PIN pin of the 
BRAKE_GPIO_PORT port is set to high level (both definitions are in 
MC_MotorControl_Layer.c, default values are GPIOD and GPIO_Pin_13 for compatibility 
with STM3210B-MCKIT). From then on, a hysteresis control of the bus voltage is performed. 
Hysteresis can be entered by editing the BRAKE_HYSTERESIS parameter in stm32f10x_it.c.
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3.14.2 How to modify the MB459 board for brake resistor management

In order to make the MB459 board suitable for the management of a brake resistor, it is 
necessary to solder some additional components on its wrapping area.

Figure 32 gives an example of the circuit to be used for the hardware implementation of the 
brake.

Figure 32. Brake resistor circuit

Note that the size of the resistor in terms of both resistance and sustainable power should 
be carefully dimensioned.

When using the PMSM FOC library in conjunction with the STM3210B-MCKIT, note that the 
pin 23 of the MC connector (J7) that carries the signal for brake implementation is 
positioned close to the wrapping area.

3.15 Note on debugging tools
The third party JTAG interface should always be isolated from the application using the 
MB535 JTAG opto-isolation board; it provides protection for both the JTAG interface and the 
PC connected to it.

Caution: During a breakpoint, when using the JTAG interface for the firmware development, the motor 
control cell clock circuitry should always be disabled; if enabled, a permanent DC current 
may flow in the motor because the PWM outputs are enabled, which could cause 
permanent damage to the power stage and/or motor. A dedicated bit in the DBGMCU_SR 
register, the DBG_TIM1_STOP bit, must be set to 1 (see Figure 33).
If the DBG_TIM1_STOP bit is set (Safe mode), the timer is frozen and PWM outputs are 
shut down. This is a Safe state for the inverter. The timer can still be restarted from where it 
stopped.
If the DBG_TIM1_STOP bit is reset (Normal mode), the timer continues to operate normally, 
which may prove dangerous in some cases since a constant duty cycle is applied to the 
inverter (interrupts not serviced).

In the main.c module the DBGMCU_Config(DBGMCU_TIM1_STOP, ENABLE) function 
performs the above described task.
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Figure 33. DBG_TIM1_STOP bit in TIM1 control register (extract from STM32 
reference manual)
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4 Getting started with the library

It is quite easy to set up an operational evaluation platform with a drive system that includes 
the STM3210B-MCKIT (featuring the STM32F103xx microcontroller, where this software 
runs) and a permanent-magnet motor.

This section explains how to quickly configure your system and, if necessary, customize the 
library accordingly.

Follow these steps to accomplish this task:

1. Gather all the information that is needed regarding the hardware in use (motor 
parameters, power devices features, speed/position sensor parameters, current 
sensors transconductance);

2. Edit, using an IDE, the stm32f10x_MCconf.h configuration header file (as explained 
in more detail in Section 4.1), and the following parameter header files,

– MC_Control_Param.h (see Section 4.2),

– MC_encoder_param.h (see Section 4.3) or MC_hall_prm.h (see Section 4.4),

– MC_State_Observer_param.h (see Section 4.5)

– MC_PMSM_motor_param.h (see Section 4.6);

3. Re-build the project and download it on the STM32F103xx microcontroller.

Please be aware that this procedure should also be followed when the final target is a 
sensorless drive. In fact, receiving speed/position information from any kind of sensor 
makes it possible to achieve a more precise customization, and to tune the algorithm utilized 
for sensorless rotor position reconstruction.

4.1 Library configuration file: stm32f10x_MCconf.h
The purpose of this file is to declare the compiler conditional compilation keys that are used 
throughout the entire library compilation process to:

● Select which current measurement technique is actually in use (the choice is between 
single-shunt, three-shunt or ICS sensors, according to availability)

● Select which speed/position sensor is actually used (here the choice is between Hall 
sensors, quadrature incremental encoder or no speed sensors, depending on the 
requirements). When in sensorless mode, it is also possible to set up the driver to 
perform a rotor alignment before every motor startup

● Enable or disable the optimized drive for internal permanent magnet motors (IPMSMs)

● Enable or disable the flux-weakening functionality used to achieve motor speeds higher 
than rated

● Enable or disable the feed-forward current regulation functionality

● Enable or disable the derivative action in the PID controllers in accordance with 
expected performance and code size.

● Enable or disable the brake resistor management depending on requirements on brake 
performance and on maximum speed

● Enable or disable a virtual 2-channel DAC for real-time tracing of the most important 
software variables. For the best debug support, user should keep this feature enabled
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● Enable or disable the execution of a specific software dedicated to the tuning of current 
PIDs

● Enable or disable the tuning of the State Observer and PLL gains

● In case of "no speed sensor" it is still possible to acquire signals coming from Hall 
sensors or encoder and evaluate whether the sensorless algorithm is working properly, 
using the DAC functionality. Those signal will not be used in the FOC algorithm; the 
choice here is between Hall sensors, quadrature incremental encoder or none.

If this header file is not edited appropriately (no choice or undefined choice), you will receive 
an error message when building the project. Note that you will not receive an error message 
if the configuration described in this header file does not match the hardware that is actually 
in use, or in case of wrong wiring.

More specifically:

● #define ICS_SENSORS

To be uncommented when current sampling is done using isolated current sensors.

● #define THREE_SHUNT

To be uncommented when current sampling is performed via three shunt resistors 
(default).

● #define SINGLE_SHUNT

To be uncommented when current sampling is performed via a single shunt resistor (it 
is also required to set up the MB459B power board as described in Section 3.9: Setting 
up the system when in single-shunt topology and using the MB459B power board on 
page 34)

● #define ENCODER

To be uncommented when an incremental encoder is connected to the starter kit for 
position sensing; in parallel, fill out MC_encoder_param.h (as explained in Section 4.3)

● #define HALL_SENSORS

To be uncommented when three Hall sensors (60° or 120° displaced) are in use to 
detect rotor speed; in parallel, fill out MC_hall_prm.h (as explained in Section 4.4)

● #define NO_SPEED_SENSORS

To be uncommented to use the rotor position information inside the FOC algorithm 
(rotor position information is provided by a state observer) (default). In this case, the 
user should fill MC_State_Observer_param.h and MC_PMSM_motor_param.h in 
parallel (as explained in Section 4.5 and Section 4.6, respectively)

● #define VIEW_HALL_FEEDBACK

To be uncommented only in conjunction with NO_SPEED_SENSORS. It is used to 
process the information that comes from three Hall sensors, to be displayed through 
the DAC functionality (and compared with the information coming from the sensorless 
rotor position reconstruction algorithm)

● #define VIEW_ENCODER_FEEDBACK

To be uncommented only in conjunction with NO_SPEED_SENSORS. It is used to 
process the information coming from an incremental encoder, to be displayed through 
the DAC functionality (and compared with the information coming from the sensorless 
rotor position reconstruction algorithm) (default)
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● #define NO_SPEED_SENSORS_ALIGNMENT

To be uncommented only in conjunction with NO_SPEED_SENSORS. It sets up the driver 
to perform a rotor alignment before every motor startup. In this case, the user also has 
to fill a section of MC_State_Observer_param.h (as explained in Section 4.5)

● #define IPMSM_MTPA

To be uncommented to take advantage of the optimized MTPA (maximum torque per 
ampere) drive designed for internal permanent magnet synchronous motors (IPMSMs). 
In this case, the user also has to fill a section of MC_PMSM_Motor_param.h (see 
Section 2.1.4 and Section 4.6). Leaving this #define commented (default) implies that 
the demo program optimizes vector control as needed by a PMSM (as explained in 
Section 2.1.3)

● #define FLUX_WEAKENING

To be uncommented if the user's application requires to operate the motor beyond its 
nominal speed (default). In parallel, fill MC_PMSM_Motor_param.h (as explained in 
Section 4.6); see Section 3.13 about the precautions to be taken when using the flux-
weakening feature

● #define FEED_FORWARD_CURRENT_REGULATION

To be uncommented in order to back up the standard PID current regulation with a 
feed-forward calculation. In parallel, the user should fill the corresponding section in 
MC_PMSM_Motor_param.h (as explained in Section 4.6)

● #define BRAKE_RESISTOR

To be uncommented to enable the software management of a resistive brake (refer to 
Section 3.14.2 for more information about the hardware modifications to be applied to 
the MB459 board)

Caution: In order to avoid any damage to the power stage, it is mandatory to utilize the brake resistor 
feature for operation above the nominal speed.

● #define DIFFERENTIAL_TERM_ENABLED

To be uncommented to enable the differential term in the PID regulator function in the 
MC_PID_regulators library module (see Section 5.9)

● #define FLUX_TORQUE_PIDs_TUNING

To be uncommented when a rotor position sensor is utilized. It generates a software 
dedicated to torque and flux PID gain tuning. Fill MC_Control_Param.h in parallel

● #define OBSERVER_GAIN_TUNING

If uncommented, it enables the visualization on LCD of a menu dedicated to state 
observer and PLL gain tuning

● #define DAC_FUNCTIONALITY

To be uncommented to enable the DAC functionality. Refer to Section 3.6 for more 
detailed information about this feature.

Once these settings have been done, only the required blocks will be linked in the project; 
this means that you do not need to exclude .c files from the build.

Caution: When using shunt resistors for current measurement, ensure that the REP_RATE parameter 
(in MC_Control_Param.h) is set properly (see Section 4.2 and Section A.2: Selecting the 
update repetition rate based on the PWM frequency for single- or three-shunt resistor 
configuration on page 136 for details).
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4.2 Drive control parameters: MC_Control_Param.h
The MC_Control_Param.h header file gathers parameters related to:

● Power device parameters on page 46

● Current regulation parameters on page 46

● Power board protection thresholds on page 46

● Speed loop sampling time on page 47

● Speed PID-controller init values on page 48

● Quadrature current PID-controller init values on page 49

● Linear variation of PID constants according to mechanical speed. on page 49

Power device parameters

● #define PWM_FREQ

Define here, in Hz, the switching frequency; in parallel, uncomment the maximum 
allowed modulation index definition (MAX_MODULATION_XX_PER_CENT) 
corresponding to the PWM frequency selection.

Note that if ICSs are used, the 100% modulation index is allowed regardless of the 
selected PWM frequency.

● #define DEADTIME_NS

Define here, in ns, the dead time, in order to avoid shoot-through conditions.

Current regulation parameters

● #define REP_RATE

Stator currents sampling frequency and consequently flux and torque PID regulators 
sampling rate, are defined according to the following equation:

In fact, because there is no reason for either executing the FOC algorithm without updating 
the stator currents values or for performing stator current conversions without running the 
FOC algorithm, in the proposed implementation the stator current sampling frequency and 
the FOC algorithm execution rate coincide.

Note: REP_RATE must be an odd number if currents are measured by shunt resistors (see 
Section A.2: Selecting the update repetition rate based on the PWM frequency for single- or 
three-shunt resistor configuration on page 136 for details); its value is 8-bit long;

Power board protection thresholds

● #define NTC_THRESHOLD_C

● #define NTC_HYSTERIS_C

These two values (expressed in °C) are used to set the operating temperature range of 
the power devices (measured at heat sink) when the software library is used with the 
MB459 board. In particular, if the measured temperature exceeds NTC_THRESHOLD_C, 
a fault event is generated that is kept as long as the measured temperature remains 
below NTC_THRESHOLD_C - NTC_HYSTERESIS_C.

Flux and torque PID sampling rate 2 PWM_FREQ⋅
REP_RATE 1+
---------------------------------------------=
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● #define  OVERVOLTAGE_THRESHOLD_V

● #define  UNDERVOLTAGE_THRESHOLD_V

These two values (expressed in volt) set the minimum and maximum acceptable bus 
DC voltage when the software library is utilized with the MB459 board. If the bus 
voltage exceeds OVERVOLTAGE_THRESHOLD_V or is below 
UNDERVOLTAGE_THRESHOLD_V, a fault event is generated that is kept as long as the 
bus voltage remains outside the allowed range.

● #define BUS_ADC_CONV_RATIO

Defines the ratio between the ADC input voltage and the corresponding DC bus 
voltage.

Speed loop sampling time

#define PID_SPEED_SAMPLING_TIME

The speed regulation loop frequency is selected by assigning one of the defines below:

#define PID_SPEED_SAMPLING_500µs  0   //min 500µs
#define PID_SPEED_SAMPLING_1ms    1
#define PID_SPEED_SAMPLING_2ms    3   //(4-1)*500µs=2ms
#define PID_SPEED_SAMPLING_5ms  9
#define PID_SPEED_SAMPLING_10ms   19
#define PID_SPEED_SAMPLING_20ms 39
#define PID_SPEED_SAMPLING_127ms  255 //max(255-1)*500µs=127ms

Note: Please note that the speed regulation loop frequency in the demo program also coincides 
with the control frequency of the flux-weakening and feed-forward functionalities (if they are 
enabled).
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Speed PID-controller init values

● #define PID_SPEED_REFERENCE_RPM

Define here, in rpm, the mechanical rotor speed setpoint at startup in closed loop 
mode;

● #define PID_SPEED_KP_DEFAULT

The proportional constant of the speed loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_SPEED_KI_DEFAULT

The integral constant of the speed loop regulation (signed 16-bit value, adjustable from 
0 to 32767);

● #define PID_SPEED_KD_DEFAULT

The derivative constant of the speed loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define SP_KPDIV

The scaling factor of the proportional gain for the speed regulation loop (unsigned 16-
bit power-of-two value);

● #define SP_KIDIV

The scaling factor of the integral gain for the speed regulation loop (unsigned 16-bit 
power-of-two value);

● #define SP_KDDIV

The scaling factor of the differential gain for the speed regulation loop (unsigned 16-bit 
power-of-two value)
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Quadrature current PID-controller init values

See Appendix A.4, which illustrates the method to be followed for computing initial PI 
constants, starting from motor parameters and required control bandwidth.

● #define PID_TORQUE_REFERENCE

The torque (Iq) reference value, in torque control mode, at startup (signed 16-bit value);

● #define PID_TORQUE_KP_DEFAULT

The proportional constant of the torque loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_TORQUE_KI_DEFAULT

The integral constant of the torque loop regulation (signed 16-bit value, adjustable from 
0 to 32767);

● #define PID_TORQUE_KD_DEFAULT

The derivative constant of the torque loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_FLUX_REFERENCE

The flux (Id) reference value, in torque control mode, at startup (signed 16-bit value); 
default value is 0;

● #define PID_FLUX_KP_DEFAULT

The proportional constant of the flux loop regulation (signed 16-bit value, adjustable 
from 0 to 32767);

● #define PID_FLUX_KI_DEFAULT

The integral constant of the flux loop regulation (signed 16-bit value, adjustable from 0 
to 32767);

● #define PID_FLUX_KD_DEFAULT

The derivative constant of the flux loop regulation (signed 16-bit value, adjustable from 
0 to 32767);

● #define SQUARE_WAVE_PERIOD

The period (in ms) of the square wave reference torque generated when 
FLUX_TORQUE_PIDs_TUNING is uncommented in stm32f10x_MCconf.h

● #define TF_KPDIV

The scaling factor of the proportional gains used in the current regulation loops 
(unsigned 16-bit power-of-two value). This scaling divider corresponds to the KpDIV 
parameter in Appendix A.4;

● #define TF_KIDIV

The scaling factor of the integral gains used in the current regulation loops (unsigned 
16-bit power-of-two value). This scaling divider corresponds to the KiDIV parameter in 
Appendix A.4;

● #define TF_KDDIV

The scaling factor of the differential gains used in the current regulation loops 
(unsigned 16-bit power-of-two value).

Linear variation of PID constants according to mechanical speed.

Refer to Section 5.9.4: Adjusting speed regulation loop Ki, Kp and Kd vs. motor frequency 
on page 123.
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4.3 Incremental encoder parameters: MC_encoder_param.h
The MC_encoder_parameter.h header file is to be filled if position/speed sensing is 
performed by means of a quadrature, square wave, relative rotary encoder (ENCODER or 
VIEW_ENCODER_FEEDBACK defined in stm32f10x_MCconf.h).

● #define TIMER2_HANDLES_ENCODER

To be uncommented if the two sensor output signals are wired to TIMER2 input pins 
(default; required when using STM3210B-MCKIT);

● #define TIMER3_HANDLES_ENCODER

To be uncommented if the two sensor output signals are wired to TIMER3 input pins;

● #define TIMER4_HANDLES_ENCODER

To be uncommented if the two sensor output signals are wired to TIMER4 input pins.

● #define ENCODER_PPR

Defines the number of pulses generated by a single channel, for one shaft revolution 
(actual resolution will be 4x);

● #define MINIMUM_MECHANICAL_SPEED_RPM

Defines in rpm, the minimum speed below which the speed measurement is either not 
realistic or not safe in the application; an error counter is increased every time the 
measured speed is below the specified value. In order to disable this check and control 
the motor down to zero speed, the user can set this parameter to zero: a warning 
message "pointless comparison of unsigned integer with zero" will be issued at 
compilation time.

● #define MAXIMUM_MECHANICAL_SPEED_RPM

Defines in rpm, the maximum speed above which the speed measurement is either not 
realistic or not safe in the application; an error counter is increased every time the 
measured speed is above the specified value.

● #define MAXIMUM_ERROR_NUMBER

Defines the number of consecutive errors on speed measurements to be detected 
before a fault event is generated (check rate is specified by SPEED_MEAS_TIMEBASE 
in stm32f10x_Timebase.c).

● #define SPEED_BUFFER_SIZE

Defines the buffer size utilized for averaging speed measurement. Power of two is 
desirable for ease the computation.

Alignment settings:

Quadrature encoder is a relative position sensor. Considering that absolute information is 
required for performing field oriented control, it is necessary to somehow establish a 0° 
position. This task is performed by means of an alignment phase, and is carried out at first 
motor startup and after any fault event. It basically consists in imposing a null reference 
torque (Iq) and a reference flux (Id) with a linearly increasing magnitude and a constant 
orientation.

If properly configured, at the end of this phase, the rotor is locked in a well-known position 
and the encoder timer counter is initialized accordingly.
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The following parameters are used to customize the alignment phase depending on the 
motor inertia and load conditions:

● T_ALIGNMENT in milliseconds defines the desired duration of the alignment phase

● ALIGNMENT_ANGLE specifies the vector orientation (angle θ in the below diagram)

Figure 34. Alignment angle

● I_ALIGNMENT (in digits) defines the final value of the reference Id magnitude. With 
STM3210B-MCKIT and with ALIGNMENT_ANGLE set to 90° (default), the final phase A 
current value can be computed by using the formula:

 Alignment final phase A current = (I_ALIGNMENT * 0.64)/(32767*Rshunt)

a

b

c

q

θ0

d

ai14833
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4.4 Hall sensor parameters: MC_hall_prm.h
The MC_hall_prm.h header file is to be filled if a position/speed sensing is performed by 
means of three Hall sensors (HALL_SENSORS or VIEW_HALL_FEEDBACK defined in 
stm32f10x_MCconf.h).

● #define TIMER2_HANDLES_HALL

To be uncommented if the three sensor output signals are wired to TIMER2 input pins 
(default; required if using STM3210B-MCKIT);

● #define TIMER3_HANDLES_HALL

To be uncommented if the three sensor output signals are wired to TIMER3 input pins;

● #define TIMER4_HANDLES_HALL

To be uncommented if the three sensor output signals are wired to TIMER4 input pins.

● #define HALL_SENSORS_PLACEMENT

Defines the electrical displacement between the Hall sensors expressed in degrees 
(physical displacement × number of pole pairs). The choice is between 120 
(DEGREES_120) and 60 degrees (DEGREES_60).

● #define HALL_PHASE_SHIFT

Defines the electrical phase shift (degrees) between the 0° angle, with the convention 
utilized in the firmware, and the first rising edge on TIMx_CH1 (H1 signal with 
STM3210B-MCKIT).

Refer to Section 3.12 for a detailed explanation on how to determine this parameter.

● #define HALL_MAX_SPEED_FDBK_RPM

Defines the rotor mechanical frequency (rpm) above which speed feedback is not 
realistic in the application: used to discriminate glitches for instance.

● #define HALL_MAX_SPEED

This parameter is the value returned by the HALL_GetSpeed function (0.1 Hz unit) if 
measured speed is greater than HALL_MAX_SPEED_FDBK_RPM. The default value is 
500 Hz, but it can be 0 or FFFF depending on how this value is managed by the upper 
layer software.

● #define HALL_MAX_PSEUDO_SPEED

This parameter is the value returned by the HALL_GetRotorFreq function if 
measured speed is greater than MAX_SPEED_FDBK. The unit is ddp. See Appendix A.7 
for more details about how to convert Hertz into pseudofrequency.

● #define HALL_MIN_SPEED_FDBK_RPM

Defines the rotor mechanical frequency below which speed feedback is not realistic in 
the application.

● #define HALL_MAX_RATIO

– It defines the lowest speed that can be measured (when counter = 0xFFFF)

– It also prevents the clock prescaler from decreasing excessively when the motor is 
stopped. (This prescaler is automatically adjusted during each capture interrupt to 
optimize the timing resolution.)
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● #define HALL_MAX_OVERFLOWS

This is the maximum number of consecutive timer overflows taken into account. It is set 
by default to 2: if the timer overflows more than twice (meaning that the Hall sensor 
period has been increased by a factor of at least two between two consecutive valid 
edges), the number of overflows is not counted anymore. This usually indicates that 
information has been lost (Hall sensor timeout) or that speed is decreasing very 
sharply. The corresponding timeout delay depends on the selected timer prescaler, 
which is variable; the higher the prescaler (low speed), the longer the timeout period 
(see also Section 5.7)

● #define HALL_SPEED_FIFO_SIZE

This is the length of the software FIFO in which the latest speed measurements are 
stored. This stack is necessary to compute rolling averages on several consecutive 
pieces of data.

4.5 State observer parameters: MC_State_Observer_param.h
The MC_State_Observer_param.h is to be filled if the user wants to take advantage of 
or evaluate the implemented sensorless algorithm for rotor position / speed detection. In that 
case, the MC_PMSM_motor_param.h header file also has to be configured accordingly 
(see Section 4.6).

See also Section 3.13, which guides you progressively through the steps that make a 
sensorless system up and running.

The gathered parameters are related to the:

● state observer

● startup

● measurement statistics and reliability

4.5.1 State observer parameters

● #define MAX_CURRENT

In Amperes, defines the current value equivalent to an ADC conversion equal to 32767 
(signed 16 bits max). If the current is measured by using shunt resistors then:

, where:

– Av is the gain of the amplifying network (Av = 2.57 on the MB459B kit board)

– Rshunt is the shunt resistance (in Ohms)

● #define K1

K1 (signed 32-bit value) is an element of the gain vector of the implemented state 
observer (as described in Section 2.2). An “a priori” determination of K1 can be made 
using the formulas given in Section A.5. When the motor is running, this initial value 
can then be tuned using the LCD interface and evaluating the results. In that case, the 
value of K1 read on the display is 10 times smaller.

● #define K2

K2 (signed 32-bit value) is an element of the gain vector of the implemented state 
observer (as described in Section 2.2). An “a priori” determination of K2 can be made 
using the formulas given in Section A.5. When the motor is running, this initial value 

MAX_CURRENT 3.3
2 Rshunt Aν⋅ ⋅
------------------------------------------=
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can then be tuned using the LCD interface and evaluating the results. In that case, the 
value of K2 read on the display is 100 times smaller.

● #define PLL_KP_GAIN

The default formula provides an “a priori” determination of the phase detector gain of 
the PLL. Nonetheless, this (signed 16-bit) value can be tuned when the motor is 
running, by using the LCD interface and evaluating the results. If necessary, the default 
value can be overwritten with a more suitable one.

● #define PLL_KI_GAIN

The default formula provides an “a priori” determination of the loop filter gain of the 
PLL. Nonetheless, this (signed 16-bit) value can be tuned when the motor is running by 
using the LCD interface and evaluating the results. If necessary, the default value can 
be overwritten with a more suitable one.

● #define F1, #define F2

These coefficients (signed 16-bit values) help amplify the observer equations, so that 
motor winding resistance and inductance can give a valuable contribution.

Maximum value is 215 = 32768

Note: Depending on several system parameters (motor parameters, state observer parameters, 
sampling frequency, current and voltage conversion parameters), compilation errors [Pe068] 
or/and [Pe069] may occur in the MC_State_Observer_Interface.c source file. In that 
case, the user should follow the procedure below to solve the problem:

1 Jump to the code line where the error was reported and see which Cx factor (x=1..5) caused 
the issue.

2 Go to the definition of that Cx factor (in MC_State_Observer_param.h) and assess 
whether F1 or F2 is involved.

3 Decrease F1 or F2 accordingly, always choosing positive powers of two.

4.5.2 Startup parameters

Rotor position reconstruction is based on the observation of the back-emfs generated when 
the rotor is running. Therefore, a startup procedure has been implemented in order to spin 
the motor when starting from standstill: a rotating stator flux is generated by a three-phase 
symmetrical current, thus causing the rotor to follow.

The startup procedure has assumedly ended successfully when the observation of the 
back-emfs becomes reliable, according to the parameters explained in Section 4.5.3 (and 
the main state machine switches from Start to Run) otherwise a timeout occurs (in that case 
the main state machine switches from Start to Fault).

The parameters described in this section are used to adapt the startup to the application by 
customizing the amplitude and frequency profiles (see Figure 35) of the three-phase current 
system.
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Figure 35. Startup current system frequency and amplitude profile

● #define FREQ_START_UP_DURATION

In milliseconds, defines the overall time allowed for startup.

● #define FINAL_START_UP_SPEED

In RPM, defines the speed of the rotating stator flux, and hence of the rotor, at the end 
of the overall time allowed for startup (this parameter sets the slope of the frequency 
linear ramp-up).

● #define FIRST_I_STARTUP

In digits, defines the initial amplitude of the three-phase current system according to 
the formula below:

● #define FINAL_I_STARTUP

In digits, defines the final amplitude of the three-phase current system according to the 
above formula. This amplitude should be chosen to generate an electromagnetic 
torque Te that matches the estimated load applied.

● #define I_STARTUP_DURATION

In milliseconds, defines the time allowed to increase current amplitude linearly from 
initial to final amplitude.

● #define MINIMUM_SPEED_RPM

In RPM, defines the minimum speed at which the startup procedure may end (if the 
rotor speed / position detection is considered reliable) to make way for normal 
operations.
Depending on the user's application requirements, a rotor alignment or pre-positioning 

I(digit)
I(Amps) Rshunt Aν 65536⋅ ⋅ ⋅

3.3
------------------------------------------------------------------------------------=
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phase can be performed before each motor startup. This additional feature is activated 
as an option by properly configuring stm32f10x_MCconf.h (see Section 4.1).

In this case, the following parameters should be selected to achieve the expected 
behavior:

– #define SLESS_T_ALIGNMENT

In milliseconds, defines the desired duration of the alignment phase.

– #define SLESS_ALIGNMENT_ANGLE

specifies the vector orientation (angle θ in Figure 34)

– #define SLESS_I_ALIGNMENT

Defines (in digits) the final value of the reference Id magnitude. With STM3210B-
MCKIT and with SLESS_ALIGNMENT_ANGLE set to 90° (default), the final phase A 
current value can be computed by using the formula:

Alignment final phase A current = (SLESS_I_ALIGNMENT × 0.64)/(32767 × Rshunt)

4.5.3 Statistics parameters

State observer output results are continuously monitored to statistically assess the reliability 
of the rotor speed / position information supplied. Since this technique is used as a fault 
detection system, the parameters described in this section are used to set the desired safety 
level.

● #define VARIANCE_THRESHOLD

This parameter sets the threshold for the speed measurement variance. The 
sensorless algorithm calculation is not considered reliable if the variance of the 
observed speed is greater than the desired percentage of the mean value, according to 
the formula: , where σ and μ are the variance and the 
mean value of the observed speed, respectively (for instance, a 
VARIANCE_THRESHOLD of 0.0625 leads to a percentage of the mean value equal to 
25%).

The lower the VARIANCE_THRESHOLD parameter, the more strict (and hence the 
higher the safety level) of this fault detection algorithm, and vice versa.

● #define RELIABILITY_HYSTERESIS

This (unsigned 8-bit) parameter defines the number of consecutive times the speed 
measurement variance should be found higher than the VARIANCE_THRESHOLD 
threshold before the rotor speed / position detection algorithm is declared nonreliable.

In this case, the main state machine switches from Run to Fault (see Section 3.8 about 
the fault messages and Section 5.8 about the functions that implement this method).

● #define NB_CONSECUTIVE_TESTS

Defines the number of consecutive times the speed measurement variance should be 
found lower than the VARIANCE_THRESHOLD threshold before the startup procedure is 
declared to have successfully completed. In this case, the main state machine switches 
from Start to Run (see Section 3.8 about the fault messages).

σ2 μ2
VARIANCE_THRESHOLD⋅≥
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4.6 Permanent-magnet synchronous motor parameters:
MC_PMSM_motor_param.h

The MC_PMSM_motor_param.h is to be filled with the motor parameters. Three different 
sections can be distinguished:

● Parameters needed to carry out the FOC

● Parameters needed to perform sensorless rotor speed / position detection

● Parameters needed to perform the flux weakening functionality

● Parameters needed to optimize the drive of an IPMSM (MTPA)

● Parameters needed to carry out feed-forward current regulation

4.6.1 Basic motor parameters

This is the minimum set of motor parameters to be known in order to carry out FOC:

● #define POLE_PAIR_NUM

Defines the number of magnetic pole pairs.

● #define NOMINAL_CURRENT

In digits, defines the motor nominal current (0 to peak) according to the formula:

.

Of course, these data are to be matched with inverter current rating.

● #define MOTOR_MAX_SPEED_RPM

In RPM, defines the maximum motor speed required by the application. This parameter 
could be set depending on the application specification, on account of load profiles and 
on account of the mechanical construction of the motor.

If the mechanical load is lower than rated, a speed higher than rated could be achieved 
by activating the flux-weakening functionality (see Section 2.3, Section 3.4 and 
Section 4.1).

● #define ID_DEMAG

In digit (negative 16-bit signed value), defines the maximum reference current id* that 
does NOT demagnetize the motor magnets. At most, this parameter could be equal to 
–NOMINAL_CURRENT (default)
Note that if neither the IPMSM MTPA nor the flux-weakening functionality is enabled, 
the #define ID_DEMAG parameter does not need specifying (leave it unchanged at 
the default value).

I(digit)
I(Amps) Rshunt Aν 65536⋅ ⋅ ⋅

3.3
------------------------------------------------------------------------------------=
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4.6.2 Motor parameters for sensorless FOC

These parameters are used by the state observer algorithm to detect the rotor speed and 
position (see also Section 4.5):

– #define RS

Defines the motor winding resistance (phase) in Ohms.

– #define LS

Defines the motor winding inductance (phase) in Henry.
Note that if the motor being used is an IPMSM, then Ld ≠ Lqand the synchronous 
inductance Ls may be set equal to Lq (see [5] in A.9: References).

– #define MOTOR_VOLTAGE_CONSTANT

Defines the motor voltage constant Ke (V/krpm RMS phase to phase) in Volts.

4.6.3 Additional parameters for flux weakening operation

This section has to be filled if, depending on the application specifics, the drive has to 
operate the motor beyond its rated speed (here, rated speed is considered to be the highest 
speed at which the motor can deliver maximum torque).

The mechanical limit of the motor must not be exceeded in any case. Moreover, if the motor 
is being operated beyond the rated speed, it is mandatory to have a regenerative power 
converter or a brake resistance (see Section 3.14).

See Section 2.3 about the strategy implemented for flux weakening control.

● #define FW_VOLTAGE_REF

Defines (in tenths of percent of the maximum available voltage) the stator voltage 
amplitude reference level to be kept constant during flux-weakening operations. The 
higher this parameter (close to 1000), the more effective the exploitation of the DC bus 
voltage.

● #define FW_KP_GAIN

Defines (as a positive digit) the proportional gain of the PI regulator acting inside the 
flux-weakening module (see block diagram illustrated in Figure 13: Flux-weakening 
operation scheme.

● #define FW_KI_GAIN

Defines (as a positive digit) the integral gain of the PI regulator acting inside the flux-
weakening module (see block diagram depicted in illustrated in Figure 13: Flux-
weakening operation scheme.
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4.6.4 Additional parameters for IPMSM drive optimization (MTPA)

To edit the parameters related to MTPA, it is required to fill the annexed spreadsheet with 
the information below:

● Motor rated current, 0-to-peak Amperes, cell B2. These data must be matched with 
inverter current rating.

● Motor winding Ld inductance, H, cell B3

● Motor winding Lq inductance, H, cell B4

● Motor voltage constant Ke, Volts RMS/krpm, phase-to-phase, cell B5

● Motor winding resistance, Ohms, cell B6

● Number of magnetic pole pairs, cell B7

● Shunt resistance, Ohms, cell B9

● Amplification network gain (shunt current reading), cell B10

As a result of data processing, the following information can be obtained from the 
spreadsheet:

● #define IQMAX

The user can copy it from cell B19

● #define SEGDIV

The user can copy it from cell B20

● #define ANGC

The user can copy it from cell B21

● #define OFST

The user can copy it from cell B22

4.6.5 Additional parameters for feed-forward, high performance current 
regulation

To edit the parameters related to feed forward, it is required to fill the annexed spreadsheet 
with the information below:

● Motor winding Ld inductance, H, cell B3

● Motor winding Lq inductance, H, cell B4
Note that if the motor in use is an SM-PMSM, then Ld should be set equal to Lq.

● Motor voltage constant Ke, Volts RMS/krpm, phase-to-phase, cell B5

● Shunt resistance, Ohms, cell B9

● Amplification network gain (shunt current reading), cell B10

● SAMPLING_FREQ (is the FOC sampling rate automatically computed in precompilation 
phase starting from REP_RATE and PWM_FREQ, according to the following equation:

, kHz, cell B11

● DC bus to ADC conversion factor; it defines the ratio between the ADC input voltage 
and the corresponding DC bus voltage, cell B12

Flux and torque PID sampling rate 2 PWM_FREQ⋅
REP_RATE 1+
---------------------------------------------=
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As a result of data processing, the following information can be obtained from the 
spreadsheet:

● #define CONSTANT1_Q

The user can copy it from cell B25

● #define CONSTANT1_D

The user can copy it from cell B26

● #define CONSTANT2

The user can copy it from cell B27
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5 Library functions

Functions are described in the format given below:

         

Some of these sections may not be included if not applicable (for example, no parameters or 
obvious use).

5.1 Current reading in three shunt resistor topology and space
vector PWM generation: stm32f10x_svpwm_3shunt module
Two important tasks are performed in the stm32f10x_svpwm_3shunt module:

● Space vector pulse width modulation (SVPWM)

● Current reading in three shunt resistor topology 

In order to reconstruct the currents flowing through a three-phase load with the required 
accuracy using three shunt resistors, it is necessary to properly synchronize A/D 
conversions with the generated PWM signals. This is why the two tasks are included in a 
single software module.

Synopsis Lists the prototype declarations.

Description Describes the functions specifically with a brief explanation of how they 
are executed.

Input Gives the format and units.

Returns Gives the value returned by the function, including when an input value 
is out of range or an error code is returned.

Note Indicates the limits of the function or specific requirements that must be 
taken into account before implementation.

Caution Indicates important points that must be taken into account to prevent 
hardware failures.

Functions called Lists called functions. Useful to prevent conflicts due to the 
simultaneous use of resources.

Code example Indicates the proper way to use the function, and if there are certain 
prerequisites (interrupt enabled, etc.).
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5.1.1 List of available functions

The following is a list of available functions as listed in the 
stm32f10x_svpwm_3shunt.h header file:
● SVPWM_3ShuntInit on page 62

● SVPWM_3ShuntCurrentReadingCalibration on page 63

● SVPWM_3ShuntGetPhaseCurrentValues on page 63

● SVPWMEOCEvent on page 64

● SVPWMUpdateEvent on page 64

● SVPWM_3ShuntCalcDutyCycles on page 64

● SVPWM_3ShuntAdvCurrentReading on page 65

SVPWM_3ShuntInit

Synopsis void SVPWM_3ShuntInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for   
performing 3 shunt resistor topology current reading and center aligned 
PWM generation.

The function initializes NVIC, ADC, GPIO, TIM1 peripherals.

In particular, the ADC and TIM1 peripherals are configured to perform 
two simultaneous A/D conversions per PWM switching period. 

Refer to Section 5.1.3 for further information.

Input None.

Returns None.

Note It must be called at main level.

Functions called Standard library:

RCC_ADCCLKConfig, RCC_AHBPeriphClockCmd, 
RCC_APB2PeriphClockCmd, GPIO_StructInit, GPIO_Init, 
GPIO_PinLockConfig,GPIO_PinRemapConfig, TIM1_DeInit,   
TIM1_TimeBaseStructInit, TIM1_TimeBaseInit, TIM1_OCStructInit, 
TIM1_OC1Init, TIM1_OC2Init, TIM1_OC3Init, TIM1_OC4Init, 
TIM1_OC1PreloadConfig, TIM1_OC2PreloadConfig, 
TIM1_OC3PreloadConfig, TIM1_OC4PreloadConfig, 
TIM1_BDTRConfig, TIM1_SelectOutputTrigger, 
TIM1_ClearITPendingBit, TIM1_ITConfig, 
TIM1_Cmd,TIM1_GenerateEvent, TIM1_ClearFlag, ADC_DeInit, 
ADC_Cmd, ADC_StructInit, ADC_Init, ADC_StartCalibration, 
ADC_GetCalibrationStatus, ADC_RegularChannelConfig, 
ADC_InjectedSequencerLengthConfig, ADC_InjectedChannelConfig, 
NVIC_PriorityGroupConfig, NVIC_StructInit, NVIC_Init.

Motor control library:

SVPWM_3ShuntCurrentReadingCalibration
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SVPWM_3ShuntCurrentReadingCalibration

SVPWM_3ShuntGetPhaseCurrentValues

Synopsis void SVPWM_3ShuntCurrentReadingCalibration(void);

Description The purpose of this function is to store the three analog voltages 
corresponding to zero current values for compensating the offset 
introduced by the amplification network.

Input None.

Returns None.

Note This function reads the analog voltage on the ADC channels used for 
current reading. For this reason it must be called before the PWM 
outputs are enabled so that the current flowing through the inverter is 
zero. Those values are then stored into Phase_x_Offset variables.

Functions called Standard library:

ADC_ITConfig, ADC_ExternalTrigInjectedConvConfig, 
ADC_ExternalTrigInjectedConvCmd, 
ADC_InjectedSequencerLengthConfig, 
ADC_InjectedChannelConfig, ADC_ClearFlag, 
ADC_SoftwareStartInjectedConvCmd, ADC_GetFlagStatus, 
ADC_GetInjectedConversionValue, 
ADC_SoftwareStartInjectedConvCmd

Motor control library:

SVPWM_InjectedConvConfig

Synopsis Curr_Components SVPWM_3ShuntGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in 
q1.15 format starting from values acquired from the A/D Converter 
peripheral.

Input None.

Returns Curr_Components type variable.

Note In order to have a q1.15 format for the current values, the digital value 
corresponding to the offset must be subtracted when reading phase 
current A/D converted values. Therefore, the function must be called 
after SVPWM_3ShuntCurrentReadingCalibration.

Functions called None.
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SVPWMEOCEvent

SVPWMUpdateEvent

SVPWM_3ShuntCalcDutyCycles

Synopsis void SVPWMEOCEvent();

Description Routine to be performed inside the end of conversion ISR. It 
computes the bus voltage and temperature sensor sampling and 
disables external ADC triggering.

Input None.

Returns Always true.

Note None.

Functions called ADC_GetInjectedConversionValue.

Synopsis void SVPWMUpdateEvent(void);

Description Routine to be performed inside the update event ISR. It re-enables 
external ADC triggering.

Input None.

Returns None.

Note None.

Functions called ADC_ClearFlag.

Synopsis void SVPWM_3ShuntCalcDutyCycles (Volt_Components 
Stat_Volt_Input);

Description After executing the FOC algorithm, new stator voltage components Vα 
and Vβ are computed. The purpose of this function is to calculate 
exactly the three duty cycles to be applied to the inverter legs starting 
from the values of these voltage components.

Moreover, once the three duty cycles to be applied in the next PWM 
period are known, this function sets the Channel 4 output compare 
register used to set the sampling point for the next current reading. In 
particular, depending on the duty cycle values, the sampling point is 
computed (see Section 5.1.3).

Refer to Section 5.1.2 for information on the theoretical approach of 
SVPWM.

Input Vα and Vβ 

Returns None.

Note None.

Functions called None.
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SVPWM_3ShuntAdvCurrentReading

5.1.2 Space vector PWM implementation

Figure 36 shows the stator voltage components Vα and Vβ while Figure 37 illustrates the 
corresponding PWM for each of the six space vector sectors.

Figure 36. Vα and Vβ stator voltage components

Synopsis void SVPWM_3ShuntAdvCurrentReading(FunctionalState cmd);

Description It is used to enable or disable advanced current reading. If advanced 
current reading is disabled, current reading is performed in conjunction 
with the update event.

Input cmd (ENABLE or DISABLE)

Returns None.

Note None.

Functions called TIM1_ClearFlag, TIM1_ITConfig
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Figure 37. SVPWM phase voltage waveforms

With the following definitions for: ,  and ,

 and .

literature demonstrates that the space vector sector is identified by the conditions shown in 
Table 1.

         

The duration of the positive pulse widths for the PWM applied on Phase A, B and C are 
respectively computed by the following relationships:

Sector I, IV: , , 

Sector II, V: , , 

Sector III, VI: , , , where T is the PWM period.

Now, considering that the PWM pattern is center aligned and that the phase voltages must 
be centered at 50% of duty cycle, it follows that the values to be loaded into the PWM output 
compare registers are given respectively by:

Table 1. Sector identification

Y < 0 Y ≥ 0

Z < 0 Z ≥ 0 Z < 0 Z ≥ 0

X ≤ 0 X > 0 X ≤ 0 X > 0

Sector V IV III VI I II

Uα 3 T Vα××= Uβ T– Vβ×= X Uβ=

Y
Uα Uβ+

2
--------------------= Z

Uβ Uα–

2
--------------------=

tA
T X Z–+

2
-----------------------= tB tA Z+= tC tB X–=

tA
T Y Z–+

2
-----------------------= tB tA Z+= tC tA Y–=

tA
T X Y+–

2
------------------------= tB tC X+= tC tA Y–=
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Sector I, IV: , , 

Sector II, V: , , 

Sector III,VI: , , 

5.1.3 Current sampling in three shunt topology and general purpose A/D
conversions

The three currents I1, I2, and I3 flowing through a three-phase system follow the 
mathematical relation:

I1 + I2 + I3 = 0

For this reason, to reconstruct the currents flowing through a generic three-phase load, it is 
sufficient to sample only two out of the three currents while the third one can be computed 
by using the above relation. 

The flexibility of the STM32F103xx A/D converter makes it possible to synchronously 
sample the two A/D conversions needed for reconstructing the current flowing through the 
motor. The ADC can also be used to synchronize the current sampling point with the PWM 
output using the external triggering capability of the peripheral. Owing to this, current 
conversions can be performed at any given time during the PWM period. To do this, the 
control algorithm uses the fourth PWM channel of TIM1 to synchronize the start of the 
conversions.

Injected conversions, as described above, are used for current-reading purposes whereas 
regular conversions are reserved for the user. As soon as the injected A/D conversions for 
current-reading purposes have completed, bus voltage and temperature sensing are also 
simultaneously converted by the dual A/D.

Figure 38 shows the synchronization strategy between the TIM1 PWM output and the ADC. 
The A/D converter peripheral is configured so that it is triggered by the rising edge of 
TIM1_CH4.

TimePhA T
4
--- T 2⁄ X Z–+

2
----------------------------------+= TimePhB TimePhA Z+= TimePhC TimePhB X–=

TimePhA T
4
--- T 2⁄ Y Z–+

2
----------------------------------+= TimePhB TimePhA Z+= TimePhC TimePhA Y–=

TimePhA T
4
--- T 2⁄ Y X–+

2
----------------------------------+= TimePhB TimePhC X+= TimePhC TimePhA Y–=
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Figure 38. PWM and ADC synchronization

In this way, supposing that the sampling point must be set before the counter overflow, that 
is, when the TIM1 counter value matches the OCR4 register value during the upcounting, 
the A/D conversions for current sampling are started. If the sampling point must be set after 
the counter overflow, the PWM 4 output has to be inverted by modifying the CC4P bit in the 
TIM1_CCER register. In so doing, when the TIM1 counter matches the OCR4 register value 
during the downcounting, the A/D samplings are started.

After the first two simultaneous conversions other two simultaneous conversions are started, 
one for the bus voltage and the other for the temperature sensing. At the end of the second 
conversion, the three-phase load current has been updated and the FOC algorithm can then 
be executed in the A/D end of injected conversion interrupt service routine (JEOC ISR).

After execution of the FOC algorithm, the value to be loaded into the OCR4 register is 
calculated to set the sampling point for the next PWM period, and the A/D converter is 
configured to sample the correct channels.

Regular conversions are reserved for user purposes and must be configured manually (See 
also firmware standard library user manual UM0427).

TIM1_CH3

TIM1_CH4

ADC Start

TIM1_CH1

TIM1_CH2

Sampling point before counter overflow

TIM1_CH3

TIM1_CH4

ADC Start

TIM1_CH1

TIM1_CH2

Sampling point after counter overflow

Counter overflow

OCR 3

OCR 2

OCR 1

OCR 4

OCR 3

OCR 2

OCR 1

OCR 4

ai14835
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5.1.4 Tuning delay parameters and sampling stator currents in three shunt
resistor topology

Figure 39 shows one of the three inverter legs with the related shunt resistor:

Figure 39. Inverter leg and shunt resistor position

To indirectly measure the phase current I, it is possible to read the voltage V providing that 
the current flows through the shunt resistor R. 

It is possible to demonstrate that, whatever the direction of current I, it always flows through 
the resistor R if transistor T2 is switched on and T1 is switched off. This implies that in order 
to properly reconstruct the current flowing through one of the inverter legs, it is necessary to 
properly synchronize the conversion start with the generated PWM signals. This also means 
that current reading cannot be performed on a phase where the duty cycle applied to the low 
side transistor is either null or very short.

Fortunately, as discussed in Section 5.1.3,to reconstruct the currents flowing through a 
generic three-phase load, it is sufficient to simultaneously sample only two out of three 
currents, the third one being computed from the relation given in Section 5.1.3. Thus, 
depending on the space vector sector, the A/D conversion of voltage V will be performed 
only on the two phases where the duty cycles applied to the low side switches are the 
highest. In particular, by looking at Figure 37, you can deduct that in sectors 1 and 6, the 
voltage on the Phase A shunt resistor can be discarded; likewise, in sectors 2 and 3 for 
Phase B, and finally in sectors 4 and 5 for Phase C.

Moreover, in order to properly synchronize the two stator current reading A/D conversions, it 
is necessary to distinguish between the different situations that can occur depending on 
PWM frequency and applied duty cycles.

Note: The explanations below refer to space vector sector 4. They can be applied in the same 
manner to the other sectors.
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Case 1: Duty cycle applied to Phase A low side switch is larger than
DT+TN

Where:

● DT is dead time.

● TN is the duration of the noise induced on the shunt resistor voltage of a phase by the 
commutation of a switch belonging to another phase.

● TS is the sampling time of the STM32F103xx A/D converter (the following consideration 
is made under the hypothesis that TS < DT + TN). Refer to the STM32F103xx reference 
manual for more detailed information.

This case typically occurs when SVPWM with low (<60%) modulation index is generated 
(see Figure 40). The modulation index is the applied phase voltage magnitude expressed as 
a percentage of the maximum applicable phase voltage (the duty cycle ranges from 0% to 
100%).

Figure 41 offers a reconstruction of the PWM signals applied to low side switches of Phase 
A and B in these conditions plus a view of the analog voltages measured on the 
STM32F103xx A/D converter pins for both Phase B and C (the time base is lower than the 
PWM period).

Figure 40. Low-side switch gate signals (low modulation indexes)

Note that these current feedbacks are constant in the view in Figure 41 because it is 
assumed that commutations on Phase B and C have occurred out of the visualized time 
window.

Moreover, it can be observed that in this case the two stator current sampling conversions 
can be performed synchronized with the counter overflow, as shown in Figure 41.
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Figure 41. Low side Phase A duty cycle > DT+TN

Case 2: (DT+TN+TS)/2 < ΔDutyA < DT+TN and ΔDutyAB < DT+TR+TS

With the increase in modulation index, ΔDutyA can have values smaller than DT+TN. 
Sampling synchronized with the counter overflow could be impossible.

In this case, the two currents can still be sampled between the two Phase A low side 
commutations, but only after the counter overflow.

Consider that in order to avoid the acquisition of the noise induced on the phase B current 
feedback by phase A switch commutations, it is required to wait for the noise to be over (TN). 
See Figure 42.

Figure 42. (DT+TN+TS)/2 < ΔDutyA < DT+TN and ΔDutyAB < DT+TR+TS

Case 3: ΔDutyA < (DT+TN+TS)/2 and ΔDutyA-B>DT+TR+TS

In this case, it is no more possible to sample the currents during Phase A low-side switch-
on. Anyway, the two currents can be sampled between Phase B low-side switch-on and 

ai14836b

ai14837b
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Phase A high-side switch-off. The choice was therefore made to sample the currents TS µs 
before of phase A high-side switch-off (see Figure 43).

Figure 43. ΔDutyA < (DT+TN+TS)/2 and ΔDutyA-B>DT+TR+TS

Case 4: ΔDutyA<(DT+TN+TS)/2 and ΔDutyA-B<DT+TR+TS

In this case, the duty cycle applied to Phase A is so short that no current sampling can be 
performed between the two low-side commutations.

Furthermore if the difference in duty cycles between Phases B and A is not long enough to 
allow the A/D conversions to be performed between Phase B low-side switch-on and Phase 
A high-side switch-off, it is impossible to sample the currents (See Figure 44).

To avoid this condition, it is necessary to reduce the maximum modulation index or decrease 
the PWM frequency.

Figure 44. ΔDutyA<(DT+TN+TS)/2 and ΔDutyA-B<DT+TR+TS

ai14838b

ai14839b



UM0492 Library functions

 73/148

The following parameters have been set as default in the firmware. They are related to the 
MB459 board:

● DT = 0.8 µs

● TN = 2.55 µs

● TS = 0.7 µs

● TR = 2.55 µs

The maximum applicable duty cycles are listed in Table 2 as a function of the PWM 
frequency.
The values in Table 2 are measured using the MB459 board. This evaluation platform is 
designed to support several motor driving topologies (PMSM and AC induction) and current 
reading strategies (single- and three-shunt resistor). Therefore, the figures provided in 
Table 2 should be understood as a starting point and not as a best case.

         

It is possible to adjust the noise parameters based on customized hardware by editing the 
following definitions in the MC_pwm_3shunt_prm.h header file:
#define SAMPLING_TIME_NS 700 //0.7usec
#define TNOISE_NS 2550 //2.55usec 
#define TRISE_NS 2550 //2.55usec

Changing the noise parameters, sampling time and dead time affects the values provided in 
Table 2.

5.2 Current reading in single shunt resistor topology and space
vector PWM generation: stm32f10x_svpwm_1shunt module
Two major tasks are performed in the stm32f10x_svpwm_1shunt module:

● space-vector pulse-width modulation (SVPWM)

● current reading in single-shunt-resistor topology

In order to reconstruct the currents flowing through a three-phase load with the required 
accuracy using a single shunt resistor, it is necessary to properly synchronize A/D 
conversions with the generated PWM signals. This is why the two tasks are included in a 
single software module.

Table 2. PWM frequency vs. maximum duty cycle relationship for three-shunt
topology

PWM frequency  Max duty cycle Max modulation Index

Up to 11.4 kHz 100% 100%

12.2 kHz 99% 98%

12.9 kHz 98.5% 97%

13.7 kHz 98% 96%

14.4 kHz 98% 96%

15.2 kHz 97% 94%

16 kHz 96.5% 93%

16.7 kHz 96.5% 93%

17.5 kHz 95.5% 91%
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5.2.1 List of available functions

The following is the list of available functions as listed in the 
stm32f10x_svpwm_1shunt.h header file:

● SVPWM_1ShuntInit on page 74

● SVPWM_1ShuntCurrentReadingCalibration on page 75

● SVPWM_1ShuntGetPhaseCurrentValues on page 75

● SVPWM_1ShuntCalcDutyCycles on page 76

● SVPWM_1ShuntAdvCurrentReading on page 77

● SVPWMEOCEvent on page 77

● SVPWMUpdateEvent on page 77

SVPWM_1ShuntInit

Synopsis void SVPWM_1ShuntInit(void);

Description The purpose of this function is to set up the microcontroller peripherals 
so as to perform single-shunt-resistor topology current reading and 
center aligned PWM generation.

The function initializes the NVIC, ADC, GPIO, TIM1 and DMA 
peripherals. More particularly, the ADC and TIM1 peripherals are 
configured to perform two A/D conversions per PWM switching period. 
Refer to Section 5.2.3 for further information.

Input None.

Returns None.

Note It must be called at main level.

Functions called Standard library: RCC_ADCCLKConfig, RCC_AHBPeriphClockCmd, 
RCC_APB2PeriphClockCmd, GPIO_StructInit, GPIO_Init, 
GPIO_PinLockConfig,GPIO_PinRemapConfig, TIM1_DeInit, 
TIM1_TimeBaseStructInit, TIM1_TimeBaseInit, TIM1_OCStructInit, 
TIM1_OC1Init, TIM1_OC2Init, TIM1_OC3Init, TIM1_OC4Init, 
TIM1_OC1PreloadConfig, TIM1_OC2PreloadConfig, 
TIM1_OC3PreloadConfig, TIM1_OC4PreloadConfig, 
TIM1_BDTRConfig, TIM1_SelectOutputTrigger, 
TIM1_ClearITPendingBit, TIM1_ITConfig, 
TIM1_Cmd,TIM1_GenerateEvent, TIM1_ClearFlag, TIM1_DMACmd, 
TIM1_DMAConfig, ADC_DeInit, ADC_Cmd, ADC_StructInit, ADC_Init, 
ADC_StartCalibration, ADC_GetCalibrationStatus, 
ADC_RegularChannelConfig, ADC_InjectedSequencerLengthConfig, 
ADC_InjectedChannelConfig, NVIC_PriorityGroupConfig, 
NVIC_StructInit, NVIC_Init. DMA_DeInit, DMA_Init, DMA_Cmd

Motor control library: SVPWM_1ShuntCurrentReadingCalibration
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SVPWM_1ShuntCurrentReadingCalibration

SVPWM_1ShuntGetPhaseCurrentValues

Figure 45. Block diagram of GetPhaseCurrentValues

Synopsis void SVPWM_1ShuntCurrentReadingCalibration(void);

Description The purpose of this function is to store the analog voltages 
corresponding to zero-current values in order to compensate for the 
offset introduced by the amplification circuit.

Input None.

Returns None.

Note This function reads the analog voltage on the ADC channels used for 
current reading. For this reason it must be called before the PWM 
outputs are enabled so that the current flowing through the inverter is 
zero. Those values are then stored into the hPhaseOffset variable.

Functions called Standard library: ADC_ITConfig, 
ADC_ExternalTrigInjectedConvConfig, 
ADC_ExternalTrigInjectedConvCmd, 
ADC_InjectedSequencerLengthConfig, ADC_InjectedChannelConfig, 
ADC_ClearFlag, ADC_SoftwareStartInjectedConvCmd, 
ADC_GetFlagStatus, ADC_GetInjectedConversionValue, 
ADC_SoftwareStartInjectedConvCmd

Motor control library: SVPWM_InjectedConvConfig

Synopsis Curr_Components SVPWM_1ShuntGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in 
q1.15 format starting from values acquired from the A/D converter 
peripheral. See Figure 45.

Input None.

Returns Curr_Components type variable.

Note In order to have a q1.15 format for the current values, the digital value 
corresponding to the offset must be subtracted when reading phase 
current A/D converted values. Therefore, the function must be called 
after SVPWM_1ShuntCurrentReadingCalibration.

Functions called None.

Get current
values

ADC sample 1

ADC sample 2

Sampling current 1

Sampling current 2

IA
IB
IC

Stator current AB
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SVPWM_1ShuntCalcDutyCycles

Figure 46. Block diagram of CalcDutyCycles

Synopsis void SVPWM_1ShuntCalcDutyCycles (Volt_Components 
Stat_Volt_Input);

Description After executing the FOC algorithm, the new stator voltage 
components, Vα and Vβ, are computed. The purpose of this function is 
to calculate the three exact duty cycles to be applied to the inverter 
legs, starting from the values of these voltage components.

Moreover, once the three duty cycles to be applied during the next 
PWM period are known, this function performs the following tasks:

● Gets stator flux position (regular or boundary zone 1, 2 or 3)

● Computes the PWM channel that must be distorted and updates 
the value of duty cycle registers

● Computes the sampling point and the related sampled phase

● Sets the preload variables for PWM mode Ch 1,2,3,4.

See Figure 46. Refer to Section 5.2.2 for information on the theoretical 
approach to single-shunt current reading.

Input Vα and Vβ.

Returns None.

Note None.

Functions called None.

Sampling
current 1
Sampling
current 2
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SVPWM_1ShuntAdvCurrentReading

SVPWMEOCEvent

SVPWMUpdateEvent

Synopsis void SVPWM_1ShuntAdvCurrentReading(FunctionalState cmd);

Description It is used to enable or disable current reading. If current reading is 
disabled, the bus voltage and temperature sensor are still sampled in 
conjunction with the update event.

Input cmd (ENABLE or DISABLE)

Returns None.

Note None.

Functions called TIM1_ClearFlag, TIM1_ITConfig

Synopsis void SVPWMEOCEvent();

Description Routine to be performed inside the end-of-conversion ISR. For single-
shunt current reading, it is called twice. The first time, to store the first 
sampled value. It returns a “false”. The second time, it returns a “true” 
to indicate the execution of the FOC cycle. It computes the bus voltage 
and temperature sensor sampling, and disables external ADC 
triggering.

Input None.

Returns False the first time it is entered, True the second time.

Note None.

Functions called ADC_GetInjectedConversionValue, ADC_ITConfig.

Synopsis void SVPWMUpdateEvent(void);

Description Routine to be performed inside the update event ISR. It sets the PWM 
output mode of the four channels (Toggle or PWM), enables or 
disables the DMA event for each channel, updates the DMA buffers 
and DMA length and, finally, it re-enables external ADC triggering.

Input None.

Returns None.

Note None.

Functions called ADC_ClearFlag,ADC_ITConfig.
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5.2.2 Current sampling in single-shunt topology

Figure 47 illustrated the single-shunt hardware architecture.

Figure 47. Single-shunt hardware architecture

It is possible to demonstrate that for each configuration of the low-side switches, the current 
through the shunt resistor is given in Table 3. T4, T5 and T6 assume the complementary 
values of T1, T2 and T3, respectively.

In Table 3, the value “0” means that the switch is open whereas the value “1” means that the 
switch is closed.

         

Using the centered-aligned pattern, each PWM period is subdivided into 7 subperiods (see 
Figure 48). During three subperiods (I, IV, VII) the current through the shunt resistor is zero. 
During the other subperiods, the current through the shunt resistor is symmetrical with 
respect to the center of the PWM.

Table 3. Current through the shunt resistor

T1 T2 T3 IShunt

0 0 0 0

0 1 1 iA

0 0 1 -iC

1 0 1 iB

1 0 0 -iA

1 1 0 iC

0 1 0 -iB

1 1 1 0

ai15135

TIM1

Three PWM
output channels

OC4Ref used
as external trigger

ADC1

ADC2

T6T5T4

T3T2T1

iA iB iC

iShunt RShunt

VBUS

+
– ADC_IN12 ADC_IN10 ADC_IN3

Temperature sensor Bus voltage
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For the conditions showed in Figure 48, there are two pairs:

● subperiods II and VI, during which iShunt is equal to –iC
● subperiods III and V, during which iShunt is equal to iA

So under these conditions, it is possible to reconstruct the three-phase current through the 
motor from the sampled values:

● iA is iShunt measured during subperiod III or V

● iC is -iShunt measured during subperiod II or VI

● iB = –iA – iC

Figure 48. Single-shunt current reading

But if the stator-voltage demand vector lies in the boundary space between two space 
vector sectors, two out of the three duty cycles will assume approximately the same value. 
In this case, the seven subperiods are reduced to five subperiods.

Under these conditions, only one current can be sampled, the other two cannot be 
reconstructed. This means that it is not possible to sense both currents during the same 
PWM period, when the imposed voltage demand vector falls in the gray area of the space 
vector diagram represented in Figure 49.

Figure 49. Boundary between two space-vector sectors

Similarly, for a low modulation index, the three duty cycles assume approximately the same 
value. In this case, the seven subperiods are reduced to three subperiods. During all three 
subperiods, the current through the shunt resistor is zero. This means that it is not possible 
to sense any current when the imposed voltage vector falls in the gray area of the space-
vector diagram represented in Figure 50.
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Figure 50. Low modulation index

5.2.3 Definition of the noise parameter and boundary zone

TRise is the time required for the data to become stable in the ADC channel after the power 
device has been switched on or off.

The duration of the ADC sampling is called the sampling time.

TMIN is the minimum time required to perform the sampling, and

TMIN = TRise + sampling time + dead time

DMIN is the value of TMIN expressed in duty cycle percent. It is related to the PWM frequency 
as follows:

DMIN = (TMIN × FPWM) × 100

It is possible to adjust the noise parameters based on customized hardware by editing the 
following definitions in the MC_pwm_1shunt_prm.h header file:

● #define SAMPLING_TIME_NS 700 //0.7usec

● #define TRISE_NS 2550 //2.55usec

Changing the noise parameters, sampling time and dead time affects the values provided in 
Table 4.

Figure 51. Definition of noise parameters
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The voltage-demand vector lies in a region called the Regular region when the three duty 
cycles (calculated by space vector modulation) inside a PWM pattern differ from each other 
by more than DMIN. This is represented in Figure 52.

Figure 52. Regular region

The voltage-demand vector lies in a region called Boundary 1 when two of the duty cycles 
differ from each other by less than DMIN, and the third is greater than the other two and 
differs from them by more than DMIN. This is represented in Figure 53.

Figure 53. Boundary 1

The voltage-demand vector lies in a region called Boundary 2 when two duty cycles differ 
from each other by less than DMIN, and the third is smaller than the other two and differs 
from them by more than DMIN. This is represented in Figure 54.

Figure 54. Boundary 2

The voltage-demand vector lies in a region called Boundary 3 when the three PWM signals 
differ from each other by less than DMIN. This is represented in Figure 55.
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Figure 55. Boundary 3

If the voltage-demand vector lies in Boundary 1 or Boundary 2 region, a distortion must be 
introduced in the related PWM signal phases to sample the motor phase current.

An ST patented technique for current sampling in the “Boundary” regions has been 
implemented in the firmware. Please contact your nearest ST sales office or support team 
for further information about this technique.

Note: The current-compensation technique implemented by default can lead to bad current 
sampling if a motor with a high stator inductance is driven at a high electrical speed. In this 
case, it may be useful to exclude the default current-compensation technique by 
commenting the following define in the MC_pwm_1shunt_prm.h header file:
#define CURRENT_COMPENSATION

5.2.4 Performance

The following parameters have been set as default in the firmware. They are related to the 
MB459 board:

● DT = 0.8 µs

● TR = 1.5 µs

● TS = 0.7 µs

The maximum applicable duty cycles are listed in Table 4 as a function of the PWM 
frequency.

         

ai15143

Table 4. PWM frequency vs. maximum duty cycle relationship for single-shunt
topology

PWM frequency Max duty cycle Max modulation index Min REP_RATE

Up to 11.4 kHz 100% 100%

1

12.2 kHz 100% 100%

12.9 kHz 100% 100%

13.7 kHz 100% 100%

14.4 kHz 100% 100%

15.2 kHz 100% 100%

3
16 kHz 99.5% 99%

16.7 kHz 99% 98%

17.5 kHz 99% 98%



UM0492 Library functions

 83/148

5.3 Isolated current sensor reading and space vector PWM
generation: stm32f10x_svpwm_ics module
Two important tasks are performed in the stm32f10x_svpwm_ics module.

● Space vector pulse width modulation (SVPWM),

● Three-phase current reading when two isolated current sensors (ICS) are used.

In order to reconstruct the currents flowing through a three phase load with the required 
accuracy using two ICSs, it is necessary to properly synchronize A/D conversions with the 
generated PWM signals. This is why the two tasks are included in a single software module.

5.3.1 List of available functions and interrupt service routines

The following is a list of available functions as listed in the stm32f10x_svpwm_ics.h 
header file:

● SVPWM_IcsInit on page 84

● SVPWM_IcsCurrentReadingCalibration on page 84

● SVPWM_IcsGetPhaseCurrentValues on page 85

● SVPWM_IcsCalcDutyCycles on page 85

● SVPWMEOCEvent on page 86

● SVPWMUpdateEvent on page 86
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SVPWM_IcsInit

SVPWM_IcsCurrentReadingCalibration

Synopsis void SVPWM_IcsInit(void);

Description The purpose of this function is to set-up microcontroller peripherals for   
performing ICS reading and center aligned PWM generation.

The function initializes NVIC, ADC, GPIO, and TIM1 peripherals.

In particular, the ADC and TIM1 peripherals are configured to perform 
two pairs of simultaneous injected A/D conversions every time the 
PWM registers are updated (event called U event). The first pair of 
conversions read the current values whereas the second pair acquires 
the bus voltage and the voltage at the temperature sensor.

Refer to Section 5.3.2 for further information on A/D conversion 
triggering in ICS configuration.

Input None.

Returns None.

Note It must be called at main level.

Functions called Standard library:

RCC_ADCCLKConfig, RCC_AHBPeriphClockCmd, 
RCC_APB2PeriphClockCmd, GPIO_StructInit, GPIO_Init, 
GPIO_PinLockConfig, GPIO_PinRemapConfig, TIM1_DeInit, 
TIM1_TimeBaseStructInit, TIM1_TimeBaseInit, TIM1_OCStructInit, 
TIM1_OC1Init, TIM1_OC2Init, TIM1_OC3Init, TIM1_BDTRConfig, 
TIM1_SelectOutputTrigger, TIM1_ClearITPendingBit, TIM1_ITConfig, 
TIM1_Cmd, ADC_DeInit, ADC_Cmd, ADC_StructInit, ADC_Init, 
ADC_StartCalibration, ADC_GetCalibrationStatus, 
ADC_InjectedSequencerLengthConfig, ADC_InjectedChannelConfig, 
ADC_ExternalTrigInjectedConvCmd, NVIC_PriorityGroupConfig, 
NVIC_StructInit, NVIC_Init.

Motor control library:

SVPWM_IcsCurrentReadingCalibration 

Synopsis void SVPWM_IcsCurrentReadingCalibration(void);

Description The purpose of this function is to store the two analog voltages 
corresponding to zero current values for compensating the offset 
introduced by both ICS and amplification network.

Input None.

Returns None.

Note This function is called by MCL_Init which is executed at every motor 
startup. It reads the analog voltage on the A/D channels used for 
current reading before the PWM outputs are enabled so that the 
current flowing through the inverter is zero.
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SVPWM_IcsGetPhaseCurrentValues

SVPWM_IcsCalcDutyCycles

Functions called Standard Library:

ADC_ITConfig, ADC_ExternalTrigInjectedConvConfig, 
ADC_ExternalTrigInjectedConvCmd, ADC_InjectedChannelConfig, 
ADC_ClearFlag, ADC_SoftwareStartInjectedConvCmd, 
ADC_GetFlagStatus, ADC_GetInjectedConversionValue, 
SVPWM_IcsInjectedConvConfig

Motor Control library:

SVPWM_IcsInjectedConvConfig

Synopsis Curr_Components SVPWM_IcsGetPhaseCurrentValues(void);

Description This function computes current values of Phase A and Phase B in 
q1.15 format from the values acquired from the A/D converter.

Input None.

Returns Curr_Components type variable

Note In order to have a q1.15 format for the current values, the digital value 
corresponding to the offset must be subtracted when reading phase 
current A/D converted values. Thus, the function must be called after 
SVPWM_IcsCurrentReadingCalibration.

Functions called None.

Synopsis void SVPWM_IcsCalcDutyCycles (Volt_Components 
Stat_Volt_Input);

Description After execution of the FOC algorithm, new stator voltages component 
Vα and Vβ are computed. The purpose of this function is to calculate 
exactly the three duty cycles to be applied to the three inverter legs 
starting from the values of these voltage components.

Refer to Section 5.1.2 for details about the theoretical approach of 
SVPWM and its implementation.

Input Vα and Vβ 

Returns None.

Note None.

Functions called None.
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SVPWMEOCEvent

SVPWMUpdateEvent

5.3.2 Current sampling in isolated current sensor topology and integrating
general-purpose A/D conversions

The three currents I1, I2, and I3 flowing through a three-phase system follow the 
mathematical relationship:

I1 + I2 + I3 = 0

Therefore, to reconstruct the currents flowing through a generic three-phase load, it is 
sufficient to sample only two out of the three currents while the third one can be computed 
by using the above relationship.

The flexibility of the STM32F103xx A/D converter trigger makes it possible to synchronize 
the two A/D conversions necessary for reconstructing the stator currents flowing through the 
motor with the PWM reload register updates. The update rate can be adjusted using the 
repetition counter. This is important because, as shown in Figure 56, it is precisely during 
counter overflow and underflow that the average level of current is equal to the sampled 
current. Refer to the STM32F103xx reference manual to learn more about A/D conversion 
triggering and the repetition counter.

Note: Regular conversions are reserved for the user and must be configured manually (See also 
firmware standard library user manual UM0427).

Synopsis void SVPWMEOCEvent();

Description Routine to be performed inside the end of conversion ISR. It computes 
the bus voltage and temperature sensor sampling.

Input None.

Returns Always true.

Note None.

Functions called ADC_GetInjectedConversionValue

Synopsis void SVPWMUpdateEvent(void);

Description Routine to be performed inside the update event ISR. Nothing is 
performed.

Input None

Returns None.

Note None.

Functions called None.
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Figure 56. Stator currents sampling in ICS configuration (REP_RATE=1)

5.4 PMSM (SM-PMSM / IPMSM) field-oriented control:
MC_FOC_Drive and MC_FOC_Methods modules
The MC_FOC_Drive and MC_FOC_Methods modules, designed for surface-mounted or 
internal permanent-magnet synchronous motors, provides, at the core, decoupled 
electromagnetic torque (Te) regulation and, to some extent, flux weakening capability. In 
addition, it provides speed regulation by PID feedback control.

To operate, it requires no adjustment with all of the selectable current or speed sensing 
configurations (in accordance with the settings in the stm32f10x_MCconf.h file):

● isolated current sensing (ICS)

● three-shunt resistor current sensing

● DC link single-shunt resistor

● encoder position and speed sensing

● Hall sensor position and speed sensing

● sensorless position and speed detection

The MC_FOC_Drive module handles several functions of other modules, and has no direct 
access to the microcontroller peripheral registers.
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5.4.1 List of available C functions

● FOC_Init on page 88

● FOC_Model on page 89

● FOC_CalcFluxTorqueRef on page 90

● FOC_TorqueCtrl on page 91

● FOC_MTPA on page 92

● FOC_FluxRegulator on page 92

● FOC_FF_CurrReg on page 93

● FOC_MTPAInterface_Init on page 93

● FOC_MTPA_Init on page 94

● FOC_FluxRegulatorInterface_Init on page 94

● FOC_FluxRegulator_Init on page 94

● FOC_FluxRegulator_Update on page 95

● FOC_FF_CurrReg_Init on page 95

FOC_Init

Synopsis void FOC_Init (void)

Description It initializes to proper values all the variables related to the field-oriented 
control algorithm. To be called once prior to every motor startup.

Input None

Output None

Functions called if FLUX_WEAKENING is enabled (library configuration file): 
FOC_FluxRegulator_Init

if IPMSM_MTPA is enabled: FOC_MTPA_Init

if FEED_FORWARD_CURRENT_REGULATION is enabled: 
FOC_FF_CurrReg_Init

Note In the demo program, it's called during the INIT state.
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FOC_Model

Synopsis void FOC_Model (void)

Description The purpose of this function is to perform PMSM torque and flux 
regulation, implementing the FOC algorithm.

Current commands iqs** and ids** (which, under field oriented conditions, 
can control machine torque and flux respectively) are defined outside this 
function (in Speed control mode they are provided, by means of speed 
and flux regulators, by the FOC_CalcFluxTorqueRef function, while in 
Torque control mode they are provided by the FOC_TorqueCtrl function 
as set by the user via the LCD menus, as explained in Section 3.1).

Therefore, as a current source is required, the function has to run the 
power converter as a CR-PWM. For this purpose, it implements an high 
performance synchronous (d, q) frame current regulator, whose operating 
frequency is defined, as explained in Section 4.2, by the parameter 
REP_RATE (in conjunction with PWM_FREQ).

Triggered by ADC JEOC ISR, the function loads stator currents (read by 
ICS or shunt resistors) and carries out Clark and Park transformations, 
converting them to iqs

 and ids
 (see Figure 4).

Then, these currents are fed to PID regulators together with reference 
values iqs** and ids**. At this point, if 
FEED_FORWARD_CURRENT_REGULATION is enabled in the library 
configuration, the PID regulator output voltages, vqs and vds, are added 
up to the output voltages of the feed-forward block. They are then 
transformed back to a stator frame (through Reverse Park conversion), 
and finally drive the power stage.

In order to correctly perform Park and Reverse Park transformation, it is 
essential to know the rotor position (θr el) (because currents have to be 
oriented in phase and in quadrature with the rotor flux). To manage this 
task, depending on the configuration (set in stm32f10x_MCconf.h), the 
function can read the rotor angle measurement from encoders, Hall 
sensors, or the provided sensorless algorithm.

Input None.

Returns None.
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FOC_CalcFluxTorqueRef

Functions 
called

Clarke, Park, RevPark_Circle_Limitation;
PID_Regulator, Rev_Park;

If working with encoder:
ENC_Get_Electrical_Angle;

if Working with Hall sensors:
HALL_GetElectricalAngle;

if working in sensorless mode:
STO_Get_Electrical_Angle;

if working with ‘ICS’:
SVPWM_IcsGetPhaseCurrentValues, SVPWM_IcsCalcDutyCycles;

if working with ‘three shunt’:
SVPWM_3ShuntGetPhaseCurrentValues, 
SVPWM_3ShuntCalcDutyCycles;

If working with ‘single shunt’:
SVPWM_1ShuntGetPhaseCurrentValues, 
SVPWM_1ShuntCalcDutyCycles.

Synopsis void FOC_CalcFluxTorqueRef (void)

Description In Speed-control mode, this function provides current components 
iqs** and ids** to be used as reference values (by the FOC_Model 
function) (see “Speed closed-loop control” in Figure 5).

Speed setpoint and actual rotor speed ωr are compared in a PID 
control loop whose output is iqs*. Then, if an IPMSM motor is used 
and the user has enabled the related torque optimization algorithm, 
this reference is given to the MTPA block which returns the most 
suitable ids* reference. Otherwise, ids* is set to zero.

At this point, iqs* and ids* are passed to the flux-weakening block (if it 
has been activated) to get the final current references, iqs** and ids**, 
and feed the motor through the synchronous frame PID regulators 
and feed-forward block (if enabled).

Input None.

Returns None.



UM0492 Library functions

 91/148

FOC_TorqueCtrl

Functions 
called

PID_Regulator;

if working with encoder:

ENC_Get_Mechanical_Speed;

if working with Hall sensors:

HALL_GetSpeed;

if working in sensorless mode:

STO_Get_Speed_Hz;

If FLUX_WEAKENING is enabled (library configuration file):

FOC_FluxRegulator;

FOC_FluxRegulator_Update;

If IPMSM_MTPA is enabled:

FOC_MTPA;

if FEED_FORWARD_CURRENT_REGULATION is enabled:

FOC_FF_CurrReg.

Synopsis void FOC_TorqueCtrl(void)

Description When in Torque control mode, the demo program, via the LCD 
menus, allows the user to change the stator reference currents 
acting on the hTorque_Reference and hFlux_Reference 
variables. The purpose of this function is to copy the value of those 
variables in the iq** and id** current references, which are then fed to 
the motor using the FOC_Model function.

Input None

Output None

Functions called If FEED_FORWARD_CURRENT_REGULATION is enabled: 
FOC_FF_CurrReg

Note The demo program executes this function with the speed regulation 
loop frequency (see Section 5.10.1: List of available functions and 
interrupt service routines)
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FOC_MTPA

FOC_FluxRegulator

Synopsis s16 FOC_MTPA(s16 hIqRef)

Description This function implements the IPMSM MTPA optimized drive, 
described in Section 2.1.4: iq* (which, in speed control mode, is the 
output of the PI regulator) is the input to the function, the id* output is 
chosen by entering the linear, interpolated MTPA trajectory.

Input Reference current iq* (signed, 16 bits)

Output Reference current id* (signed, 16 bits)

Functions called None

Note As a preliminary step, the MTPA section of the header file 
MC_PMSM_motor_param.h should be customized according to the 
motor in use (see Section 4.2 for details on how to do this). The 
FOC_MTPAInterface_Init Function must be called at least once 
before the first motor startup.

In the demo program, the MTPA functionality is enabled through the 
library configuration file (see Section 4.1)

See also Figure 9: MTPA control on page 19 shows the block diagram; 
FOC_MTPAInterface_Init, FOC_MTPA_Init functions

Synopsis Curr_Components FOC_FluxRegulator (Curr_Components 
Stat_Curr_qd_ref, Volt_Components Stat_Volt_qd, s16 hVoltLevel)

Description This function implements the flux-weakening functionality as 
described in Section 2.3.

Input Reference currents iq*id* (Curr_Components structure), reference 
stator voltages vq*vd* (Volt_Components structure), stator voltage 
amplitudes to be kept as reference levels during operations (positive 
signed, 16 bits).

Output Reference current iqsat**id** (Curr_Components structure)

Functions called PID_Regulator

Note As a preliminary step, the flux-weakening section of the 
MC_PMSM_motor_param.h header file should be customized 
according to the motor in use (see Section 4.2 for details on how to 
do this). The FOC_FluxRegulatorInterface_Init function 
must be called before every motor startup.

In the demo program, this functionality is enabled through the library 
configuration file (see Section 4.1)

See also Figure 13: Flux-weakening operation scheme on page 24;
FOC_FluxRegulatorInterface_Init, 
FOC_FluxRegulator_Init, FOC_FluxRegulator_update 
functions
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FOC_FF_CurrReg

FOC_MTPAInterface_Init

Synopsis Volt_Components FOC_FF_CurrReg(Curr_Components 
Stat_Curr_qdref, Volt_Components Stat_Volt_qd, s16 hspeed, s16 
hvbus)

Description This function implements the feed-forward current regulation 
functionality, as described in Section 2.1.5.

Input Reference currents iq**id** (Curr_Components structure), reference 
stator voltages vq*vd* (Volt_Components structure), rotor electrical 
speed (dpp), DC bus voltage (positive signed, 16 bits)

Output Reference voltages vq*vd* (Volt_Components structure)

Functions called None

Note As a preliminary step, the feed-forward section of the 
MC_PMSM_motor_param.h header file should be customized 
according to the motor in use (see Section 4.2 for details on how to 
do this). The FOC_FF_CurrReg_Init function must be called at 
least once before the first motor startup.

In the demo program, this functionality is enabled through the library 
configuration file (see Section 4.1).

See also Figure 10: Feed-forward current regulation on page 20;
FOC_FF_CurrReg_Init function

Synopsis void FOC_MTPAInterface_Init(void)

Description According to the used motor and to the parameters written in the MTPA 
section of MC_PMSM_motor_param.h, it initializes all the variables 
related to the MTPA trajectory generator to proper values (FOC_MTPA 
function). It has to be called at least once before the first motor startup.

Input None (reads parameters from MC_PMSM_motor_param.h)

Output None

Functions called FOC_MTPA_Init

Note None

See also MC_type.h for structure declarations; FOC_ Init, FOC_MTPA functions
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FOC_MTPA_Init

FOC_FluxRegulatorInterface_Init

FOC_FluxRegulator_Init

Synopsis void FOC_MTPA_Init(MTPA_Const MTPA_InitStructure_in, s16 
hIdDemag_in)

Description This function is called by FOC_MTPAInterface_Init to initialize the 
MTPA algorithm according to default parameters defined in 
MC_PMSM_motor_param.h

Input MTPA initialization structure (MTPA_Const structure), maximum allowed 
reference current id* (positive signed, 16 bits)

Output None

Functions called None

Note None

See also MC_type.h for structure declarations; FOC_MTPAInterface_Init 
function

Synopsis void FOC_FluxRegulatorInterface_Init(void)

Description According to the used motor and to the parameters written in the flux-
weakening section of MC_PMSM_motor_param.h, it initializes all the 
variables related to flux-weakening operations to proper values 
(FOC_Flux_Regulator function). It has to be called before every motor 
startup.

Input None (reads parameters from MC_PMSM_motor_param.h)

Output None

Functions called FOC_FluxRegulator_Init

Note None

See also MC_type.h for structure declarations; FOC_ Init, 
FOC_FluxRegulator functions

Synopsis void FOC_FluxRegulator_Init(PID_Struct_t 
*PI_Stat_Volt_InitStructure_in, s16 hNominalCurrent_in)

Description This function is called by FOC_FluxRegulatorInterface_Init 
to initialize the flux-weakening algorithm according to default 
parameters defined in MC_PMSM_motor_param.h

Input Pointer to a PID instance structure (PID_Struct_t structure), motor 
nominal current (positive signed 16 bits)

Output None

Functions called None

Note None
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FOC_FluxRegulator_Update

FOC_FF_CurrReg_Init

5.5 Reference frame transformations: MC_Clarke_Park module
This module, intended for AC machines (induction, synchronous and PMSM), is designed to 
perform transformations of electric quantities between frames of reference that rotate at 
different speeds.

Based on the arbitrary reference frame theory, the module provides three functions, named 
after two pioneers of electric machine analysis, E. Clarke and R.H. Park.

See also MC_type.h for structure declarations; 
FOC_FluxRegulatorInterface_Init function

Synopsis s16 FOC_FluxRegulator_Update(s16 hKpGain, s16 hKiGain)

Description According to the user input, it modifies the proportional and integral 
gains of the PI regulator implemented in the flux-weakening block 
(see Figure 13: Flux-weakening operation scheme on page 24)

Input Proportional gain (positive signed 16 bits), integral gain (positive 
signed 16 bits)

Output Stator voltage amplitude (positive signed 16 bits)

Functions called None

Note None

See also None

Synopsis void FOC_FF_CurrReg_Init(s32 wConstant1Q, s32 wConstant1D, 
s32 wConstant2)

Description According to the used motor and to the parameters written in the 
feed-forward section of MC_PMSM_motor_param.h, It initializes all 
the variables related to feed-forward operations to proper values 
(FOC_FF_CurrReg function). It has to be called at least once 
before the first motor startup.

Input Signed 32 bits parameters from the related section in 
MC_PMSM_motor_param.h

Output None

Functions called None

Note See also Function FOC_ Init, FOC_FF_CurrReg
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These functions implement three variable changes that are required to carry out field-
oriented control (FOC): 

● Clarke transforms stator currents to a stationary orthogonal reference frame (named αβ 
frame, see Figure 57);

● then, from that arrangement, Park transforms currents to a frame that rotates at an 
arbitrary speed (which, in PMSM field-oriented control, is synchronous with the rotor);

● Reverse Park transformation brings back stator voltages from a rotating frame (q, d) to 
a stationary one.

The module also includes a function to calculate trigonometric functions (sine and cosine), 
and a function to correct the voltage vector command (the so-called “Circle limitation”).

Figure 57. Clarke, Park, and reverse Park transformations

5.5.1 List of available C functions

● Clarke on page 97

● Park on page 97

● Rev_Park on page 97

● Rev_Park_Circle_Limitation on page 98

● Trig_Functions on page 98
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Clarke

Park

Rev_Park

Synopsis Curr_Components Clarke (Curr_Components Curr_Input)

Description This function transforms stator currents ias and ibs (which are 
directed along axes each displaced by 120 degrees) into currents iα 
and iβ in a stationary (α β) reference frame; αβ axes are directed 
along paths orthogonal to each other.

See Section 5.5.2 for the details.

Input Stator currents ias and ibs (in q1.15 format) as members of the 
variable Curr_Input, which is a structure of type Curr_Components.

Returns Stator currents iα and iβ (in q1.15 format) as members of a structure 
of type Curr_Components.

Functions called None

Synopsis Curr_Components Park (Curr_Components Curr_Input, s16 Theta)

Description The purpose of this function is to transform stator currents iα and iβ, 
which belong to a stationary (α β) reference frame, to a reference 
frame synchronous with the rotor and properly oriented, so as to 
obtain iqs and ids.

See Section 5.5.2 for details.

Input Stator currents iα and iβ (in q1.15 format) as members of the variable 
Curr_Input, which is a structure of type Curr_Components; rotor 
angle θr el (65536 pulses per revolution).

Returns Stator currents iqs and ids (in q1.15 format) as members of a 
structure of type Curr_Components.

Functions called Trig_Functions

Synopsis Volt_Components Rev_Park (Volt_Components Volt_Input)

Description This function transforms stator voltage vq and vd, belonging to a 
rotating frame synchronous with the rotor, to a stationary reference 
frame, so as to obtain vα and vβ.

See Section 5.5.2 for details.

Input Stator voltages vqs and vds (in q1.15 format) as members of the 
variable Volt_Input, which is a structure of type Volt_Components.

Returns Stator voltages vα and vβ (in q1.15 format) as members of a 
structure of type Volt_Components.

Functions called None
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Rev_Park_Circle_Limitation

Trig_Functions

         

Synopsis void RevPark_Circle_Limitation(void)

Description After the two new values (vd and vq) of the stator voltage producing 
flux and torque components of the stator current, have been 
independently computed by flux and torque PIDs, it is necessary to 
saturate the magnitude of the resulting vector, equal to  
before passing them to the Rev_Park function. The purpose of this 
routine is to perform the saturation. Refer to Section 5.5.3: Circle 
limitation on page 101 for more detailed information 

Input None.

Returns None.

Note The limitation of the stator voltage vector must be done in 
accordance with the PWM frequency as shown in Table 2: PWM 
frequency vs. maximum duty cycle relationship for three-shunt  
topology on page 73. 

Functions called None.

Synopsis Trig_Components Trig_Functions(s16 hAngle)

Description This function returns trigonometric cosine and sine functions of the 
input angle.

Input An angle, in s16 format (correspondence with radians is illustrated in 
Figure 58)

Returns Cosine and sine of the input angle, in s16 format (see Figure 59) as 
members of a structure of the Trig_Components type.

Functions called None
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Figure 58. Radians versus s16

Figure 59. s16 versus sine and cosine
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5.5.2 Detailed explanation about reference frame transformations

PM synchronous motors show very complex and time-varying voltage equations.

By making a change of variables that refers stator quantities to a frame of reference 
synchronous with the rotor, it is possible to reduce the complexity of these equations.

This strategy is often referred to as the Reference-Frame theory [1].

Supposing fax, fbx, fcx are three-phase instantaneous quantities directed along axis each 
displaced by 120 degrees, where x can be replaced with s or r to treat stator or rotor 
quantities (see Figure 60); supposing fqx, fdx, f0x are their transformations, directed along 
paths orthogonal to each other; the equations of transformation to a reference frame 
(rotating at an arbitrary angular velocity ω) can be expressed as:

where θ is the angular displacement of the (q, d) reference frame at the time of observation, 
and θ0 that displacement at t=0 (see Figure 60).

Figure 60. Transformation from an abc stationary frame to a rotating frame (q, d)

With Clark’s transformation, stator currents ias and ibs (which are directed along axes each 
displaced by 120 degrees) are resolved into currents iα and iβ on a stationary reference 
frame (α β).
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Appropriate substitution into the general equations (given above) yields:

In Park’s change of variables, stator currents iα and iβ, which belong to a stationary 
reference frame (α β), are resolved to a reference frame synchronous with the rotor and 
oriented so that the d-axis is aligned with the permanent magnets flux, so as to obtain iqs 
and ids.

Consequently, with this choice of reference, we have:

On the other hand, reverse Park transformation takes back stator voltage vq and vd, 
belonging to a rotating frame synchronous and properly oriented with the rotor, to a 
stationary reference frame, so as to obtain vα and vβ:

5.5.3 Circle limitation

As discussed above, FOC allows to separately control the torque and the flux of a 3-phase 
permanent magnet motor. After the two new values(  and ) of the stator voltage 
producing flux and torque components of the stator current, have been independently 
computed by flux and torque PIDs, it is necessary to saturate the magnitude of the resulting 
vector ( ) before passing them to the Reverse Park transformation and, finally, to the 
SVPWM block.

The saturation boundary is normally given by the value (S16_MAX=32767) which produces 
the maximum output voltage magnitude (corresponding to a duty cycle going from 0% to 
100%).

Nevertheless, when using a single-shunt or three-shunt resistor configuration and 
depending on PWM frequency, it might be necessary to limit the maximum PWM duty cycle 
to guarantee the proper functioning of the stator currents reading block.

For this reason, the saturation boundary could be a value slightly lower than S16_MAX 
depending on PWM switching frequency when using a single-shunt or three-shunt resistor 
configuration.

Table 2 on page 73 and Table 4 on page 82 show the maximum applicable modulation index 
as a function of the PWM switching frequency when using the STM3210B-MCKIT in three- 
and single-shunt topology, respectively. Appendix A.8: MMI (maximum modulation index): 
automatic calculation explains how to calculate the MMI (maximum modulation index) for 
given PWM frequency and noise parameters.

The RevPark_Circle_Limitation function performs the discussed stator voltage 
components saturation, as illustrated in Figure 61.
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Figure 61. Circle limitation working principle

Vd and Vq represent the saturated stator voltage components to be passed to the Reverse 
Park transformation function, while Vd* and Vq*are the outputs of the PID current controllers. 
From geometrical considerations, it is possible to draw the following relationship:

         

In order to speed up the computation of the above equations while keeping an adequate 
resolution, the value 

is computed and stored in a look-up table for different values of . Furthermore, 
considering that MMI depends on the selected PWM frequency, a number of look-up tables 
are stored in MC_Clarke_Park.c (with MMI ranging from 91 to 100).

Once you have selected the required PWM switching frequency, you should uncomment the 
Max Modulation Index definition corresponding to the selected PWM frequency in the 
MC_Control_Param.h definition list shown below. 
//#define MAX_MODULATION_100_PER_CENT    // up to 11.4 kHz PWM frequency 
//#define MAX_MODULATION_99_PER_CENT      // up to 11.8 kHz PWM frequency
//#define MAX_MODULATION_98_PER_CENT      // up to 12.2 kHz PWM frequency 
//#define MAX_MODULATION_97_PER_CENT      // up to 12.9 kHz PWM frequency 
//#define MAX_MODULATION_96_PER_CENT      // up to 14.4 kHz PWM frequency 
//#define MAX_MODULATION_95_PER_CENT      // up to 14.8 kHz PWM frequency
//#define MAX_MODULATION_94_PER_CENT      // up to 15.2 kHz PWM frequency 
//#define MAX_MODULATION_93_PER_CENT      // up to 16.7 kHz PWM frequency
//#define MAX_MODULATION_92_PER_CENT      // up to 17.1 kHz PWM frequency
//#define MAX_MODULATION_91_PER_CENT      // up to 17.5 kHz PWM frequency

For information on selecting the PWM switching frequency, you will find advice in 
Section A.2 on page 136. To determine the max modulation index corresponding to the 
PWM switching frequency, refer to Table 2 on page 73 and Table 4 on page 82. As said 

*
qV

S16_MAXMMI

r2

S16_MAX

*
dVdV

qV

* V
r

V
r

*

2

r1

1r

*

* 
r

r

r

ai14845

vd
vd

* MMI S16_MAX⋅ ⋅

v
*

-----------------------------------------------------------=

vq
vq

* MMI S16_MAX⋅ ⋅

v
*

-----------------------------------------------------------=

MMI S16_MAX2⋅

v
*

-------------------------------------------------

v
*



UM0492 Library functions

 103/148

before, if ICSs are used, it is allowed to select a 100% MMI, regardless of the chosen PWM 
frequency.

5.6 Encoder feedback processing: stm32f10x_encoder module

5.6.1 List of available functions and interrupt service routines

The following is a list of available functions as listed in the stm32f10x_encoder.h header 
file:

● ENC_Init on page 103

● ENC_Get_Electrical_Angle on page 103

● ENC_Get_Mechanical_Angle on page 104

● ENC_ResetEncoder on page 104

● ENC_Clear_Speed_Buffer on page 104

● ENC_Get_Mechanical_Speed on page 104

● ENC_Calc_Average_Speed on page 105

● ENC_ErrorOnFeedback on page 105

● ENC_Start_Up on page 105

ENC_Init

ENC_Get_Electrical_Angle

Synopsis void ENC_Init(void)

Description The purpose of this function is to initialize the encoder timer. The 
peripheral clock, input pins and update interrupt are enabled. The 
peripheral is configured in 4X mode, which means that the counter is 
incremented/decremented on the rising/falling edges of both timer 
input 1 and 2 (TIMx_CH1 and TIMx_CH2 pins).

Functions called RCC_APB1PeriphClockCmd, RCC_APB2PeriphClockCmd, 
GPIO_StructInit, GPIO_Init, NVIC_Init, TIM_DeInit, 
TIM_TimeBaseStructInit, TIM_TimeBaseInit, 
TIM_EncoderInterfaceConfig, TIM_ICInit, TIM_ClearFlag, 
TIM_ITConfig, TIM_Cmd

See also STM32F103xx reference manual: TIMx in encoder interface mode

Synopsis s16 ENC_Get_Electrical_Angle(void)

Description This function returns the electrical angle in signed 16-bit format. This 
routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 degrees, 
+32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None
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ENC_Get_Mechanical_Angle

ENC_ResetEncoder

ENC_Clear_Speed_Buffer

ENC_Get_Mechanical_Speed

Synopsis s16 ENC_Get_Mechanical_Angle(void)

Description This function returns the mechanical angle in signed 16-bit format. This 
routine returns: 0 for 0 degrees, -32768 (S16_MIN) for -180 degrees, 
+32767 (S16_MAX) for +180 degrees.

Input None

Output Signed 16 bits

Functions called None

Note Link between Electrical/Mechanical frequency/RPM:

Electrical frequency = number of pair poles x mechanical frequency
RPM speed = 60 x Mechanical frequency (RPM: revolutions per minute)

Example: electrical frequency = 100 Hz, motor with 8 pair poles:
100Hz electrical <-> 100/8 =12.5Hz mechanical <-> 12.5 x 60=750 
RPM

Synopsis void ENC_resetEncoder(void)

Description This function writes into the encoder timer register the value 
corresponding to the alignment angle set in MC_encoder_param.h. It 
is called at the end of any alignment phase.

Functions called None

Synopsis void ENC_Clear_Speed_Buffer(void)

Description This function resets the buffer used for speed averaging.

Functions called None

Synopsis s16 ENC_Get_Mechanical_Speed(void)

Description This function returns the rotor speed in Hz. The value returned is 
given with 0.1Hz resolution, which means that 1234 is equal to 123.4 
Hz. 

Input None

Output Signed 16 bits

Functions called None

Note This routine returns the mechanical frequency of the rotor. To find the 
electrical speed, use the following conversion:

electrical frequency = number of pole pairs * mechanical frequency
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ENC_Calc_Average_Speed

ENC_ErrorOnFeedback

ENC_Start_Up

Synopsis void ENC_Calc_Average_Speed(void)

Description This function must be called every SPEED_MEAS_TIMEBASE ms; it 
computes the latest speed measurement, if it is out of the range 
specified in MC_encoder_param.h, then the error counter is 
incremented and the speed is saturated. Furthermore, if the error 
counter is higher than MAXIMUM_ERROR_NUMBER, the boolean 
variable storing the error status is set. Finally, the new average value 
is computed based on the latest SPEED_BUFFER_SIZE speed 
measurement.

The user can disregard the warning message ‘pointless comparison 
of unsigned integer with zero’ that is issued by the compiler if 
MINIMUM_MECHANICAL_SPEED_RPM has been set to zero.

Functions called ENC_Calc_Rot_Speed

Input None

Returns None

Synopsis bool ENC_ErrorOnFeedback(void)

Description This function simply returns the status of the boolean variable 
containing the speed measurement error status which is updated every 
SPEED_MEAS_TIMEBASE ms by the ENC_Calc_Average_Speed 
function. In the proposed firmware library this function is called in Run 
state by the main to check for possible faults of the speed feedback 
(such as disconnected encoder wires).

Functions called None

Input None

Returns boolean, TRUE if an error occurred, FALSE otherwise.

Synopsis void ENC_Start_Up (void)

Description The purpose of this function is to perform the regulation of torque and 
flux stator current component (Iq and Id) during the alignment phase of 
the PMSM. The function also updates the main state machine (from 
Start to Run) at the end of the alignment.

Functions called SVPWM_3ShuntGetPhaseCurrentValues or 
SVPWM_IcsGetPhaseCurrentValues, Clarke, Park, PID_Regulator, 
RevPark_Circle_Limitation, SVPWM_IcsCalcDutyCycles or 
SVPWM_3ShuntCalcDutyCycles, ENC_ResetEncoder, 
ENC_Clear_Speed_Buffer

Input None

Returns None
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5.7 Hall sensor feedback processing: stm32f10x_hall module

5.7.1 List of available functions

The following is a list of available functions as listed in the stm32f10x_hall.h header file:

● HALL_HallTimerInit on page 106

● HALL_GetRotorFreq on page 107

● HALL_GetSpeed on page 107

● HALL_InitHallMeasure on page 108

● HALL_IsTimedOut on page 108

● HALL_GetElectricalAngle on page 108

● HALL_IncElectricalAngle on page 109

● HALL_Init_Electrical_Angle on page 109

● HALL_ClrTimeOut on page 109

HALL_HallTimerInit

         

Synopsis void HALL_HallTimerInit(void)

Description The purpose of this function is to initialize the peripherals involved in 
Hall sensor feedback processing. In particular, GPIO input pins 
connected to the Hall sensors are initialized as floating inputs, timer 
TIMx is configured in “clear on capture” mode and its XOR input 
function is enabled, the prescaler is initialized with 
HALL_MAX_RATIO. Finally TIMx input capture (on negative edge of 
the XORed signal) and overflow (Update) event interrupts are 
enabled.

Functions called RCC_APB1PeriphClockCmd, RCC_APB2PeriphClockCmd, 
GPIO_StructInit, GPIO_Init, TIM_DeInit, TIM_TimeBaseStructInit, 
TIM_TimeBaseInit, TIM_ICStructInit, TIM_ICInit, 
TIM_PrescalerConfig, TIM_InternalClockConfig, 
TIM_SelectHallSensor, TIM_SelectInputTrigger, 
TIM_SelectSlaveMode, TIM_UpdateRequestConfig, NVIC_Init, 
TIM_ClearFlag, TIM_ITConfig, TIM_SetCounter, TIM_Cmd

See also STM32F103xx reference manual, section “Interfacing with Hall 
sensors”
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HALL_GetRotorFreq

HALL_GetSpeed

Synopsis s16 HALL_GetRotorFreq (void)

Description This routine computes the rotor electrical frequency in dpp format 
starting from the array storing the latest period measurements and 
according to the following 
formula:

where CKTIM is the timer peripheral clock and SAMPLING_FREQ is the 
sampling rate of the FOC algorithm. Be aware that speed is assumed to 
be zero if either the prescaler is equal to the maximum or a timeout 
occurred. Please refer to Section 5.7.2 for more detailed explanation of 
the operating principle utilized for speed measuring.

Functions called GetAvrgHallPeriod or GetLastHallPeriod.

Input None

Returns It returns the electrical frequency in dpp unit. Format is s16.

See also Appendix A.7: Speed formats for more information about dpp unit

Synopsis s16 HALL_GetSpeed (void)

Description This routine computes the rotor mechanical frequency in 0.1 Hz format 
starting from the array storing the latest period measurements and 
according to the following formula:

Where CKTIM is the timer peripheral clock and POLE_PAIR_NUM is 
the number of pole pairs. Be aware that returned value is zero if the 
prescaler is equal to the maximum or a timeout occurred, and that 
excessive speed (or high frequency glitches) will result in a predefined 
value being returned (HALL_MAX_SPEED).

Functions called GetAvrgHallPeriod or GetLastHallPeriod.

Input None

Returns It returns the mechanical speed in 0.1Hz unit. Format is s16

ωdpp
CKTIM 216⋅

3 SAMPLING_FREQ captured value prescaler value⋅ ⋅ ⋅
-----------------------------------------------------------------------------------------------------------------------------------------------------------------=

ωdpp
CKTIM 10⋅

3 POLE_PAIR_NUM captured value prescaler value⋅ ⋅ ⋅
----------------------------------------------------------------------------------------------------------------------------------------------------------------=
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HALL_InitHallMeasure

HALL_IsTimedOut

HALL_GetElectricalAngle

Synopsis void HALL_InitHallMeasure(void)

Description It clears software FIFO where latest speed information is "pushed". 
This function must be called before starting the motor to initialize the 
speed measurement process.

Functions called HALL_ClrCaptCounter, TIM_SetCounter, TIM_Cmd, TIM_ITConfig

Input None

Returns None

See also Section A.7 for more information about dpp unit

Synopsis bool HALL_IsTimedOut(void)

Description This function simply returns the status of the boolean variable 
containing the speed measurement timeout status. In the proposed 
firmware library this function is called in Run state by the main.c to 
check for possible faults of the speed feedback (such as 
disconnected wires).

Functions called None

Input None

Returns boolean, TRUE a timeout occurred, FALSE otherwise

Synopsis s16 HALL_GetElectricalAngle(void)

Description This function exports the private variable containing the rotor 
electrical angle information. In the present library, this function is 
called by FOC algorithm since the rotor electrical angle is 
indispensable for performing Park transformation of stator currents

Functions called None

Input None

Returns electrical angle, s16 format 

See also Section 5.5.3 for detailed explanation about reference frame 
transformations
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HALL_IncElectricalAngle

HALL_Init_Electrical_Angle

HALL_ClrTimeOut

Synopsis void HALL_IncElectricalAngle(void)

Description As will be discussed later, the software variable containing the rotor 
electrical angle information is synchronized with the feedback 
coming from the motor at each valid transition of the XOR of the 
three Hall sensor output. In addition, in order to increase the 
accuracy between two successive valid transitions, the rotor 
electrical angle information is incremented each time the FOC 
algorithm is executed (FOC_Module routine) by accumulating the 
latest speed measurement (dpp format). The 
HALL_IncElectricalAngle function performs the accumulation of the 
speed and must consequently be called with the same sampling rate 
than the FOC algorithm.

Functions called None

Input None

Returns None

Synopsis void HALL_Init_Electrical_Angle(void)

Description Hall effect sensors are “absolute” and it is thus possible to 
reconstruct the rotor position by simply reading the set of their 
outputs. This operating principle is utilized in this software function to 
initialize the software variable containing the present electrical angle 
before any motor startup. The function acts by reading the state of 
H3, H2 and H1 signal (task performed by private function 
ReadHallState) and consequently initializing the software variable. 
The maximum obtainable accuracy is ±30 electrical degrees (that is 
30/POLE_PAIR_NUM mechanical degrees).

Input None

Returns None

Synopsis HALL_ClrTimeOut

Description This function sets to FALSE the boolean variable containing the 
timeout error flag indicating that information was lost, or speed is 
decreasing sharply.

Functions called None

Input None

Returns None
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5.7.2 Speed measurement implementation

Thanks to the STM32F103xx general-purpose timer (TIMx) features, it is very simple to 
interface the microcontroller with three Hall sensors. In fact, when the TI1S bit in the 
TIMx_CR2 register is set, the three signals on the TIMx_CH1, TIMx_CH2 and TIMx_CH3 
pins are XORed and the resulting signal is input to the logic performing TIMx input capture.

In this way, the speed measurement is converted into the period measurement of a square 
wave having a frequency three times higher than the real electrical frequency. The only 
exception is that the rolling direction, which is not extractable from the XORed signal, is on 
the contrary performed by directly accessing the three Hall sensor output.

Rolling direction identification

As shown in Figure 62 it is possible to associate any of Hall sensor output combinations with 
a state whose number is obtainable by considering H3-H2-H1 as a three-digit binary 
number (H3 is the most significant bit).

Figure 62. Hall sensors, output-state correspondence

Consequently, it is possible to reconstruct the rolling direction of the rotor by comparing the 
present state with the previous one, and considering that in presence of a positive speed, 
the sequence must be the one illustrated in Figure 62.

Period measurement

Although the principle for measuring a period with a timer is quite simple, it is important to 
keep the best resolution, in particular for signals, such as the one under consideration, that 
can vary with a ratio that can easily reach 1:1000.

In order to always have the best resolution, the timer clock prescaler is constantly adjusted 
in the current implementation.

The basic principle is to speed up the timer if the captured values are too low (for an 
example of short periods, see Figure 63), and to slow it down when the timer overflows 
between two consecutive captures (see example of large periods in Figure 64).
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Figure 63. Hall sensor timer interface prescaler decrease

Figure 64. Hall sensor timer interface prescaler increase

The prescaler modification is done in the capture interrupt, taking advantage of the buffered 
registers: the new prescaler value is taken into account only on the next capture event, by 
the hardware, without disturbing the measurement.

Further details are provided in the flowchart shown in Figure 65, which summarizes the 
actions taken into the TIMx_IRQHandler.
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Figure 65. TIMx_IRQHandler flowchart

5.7.3 Electrical angle extrapolation implementation

As shown in Figure 65, the speed measurement is not the only task performed in 
TIMx_IRQHandler. Beside the speed measurement, the high-to-low transition of the XORed 
signal also gives the possibility of synchronizing the software variable containing the present 
electrical angle.

In fact, as can be seen in Figure 66 any Hall sensor transition gives very precise information 
about rotor position. 
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Figure 66. Hall sensor output transitions

For this reason, in the proposed solution, the electrical angle is synchronized every time an 
IC occurs with an angle depending on the present state on the Hall sensor output, spinning 
direction and PHASE_SHIFT (see also Section 3.12 for indications on how to measure it).

Furthermore, the utilization of the FOC algorithm implies the need for a good and constant 
rotor position accuracy, including between two consecutive falling edges of the XORed 
signal (which occurs each 120 electrical degrees). For this reason it is clearly necessary to 
somehow interpolate rotor electrical angle information. For this purpose, the latest available 
speed measurement in dpp format is added to the present electrical angle software variable 
value any time the FOC algorithm is executed.

5.8 Sensorless speed / position detection: MC_State_Observer
and MC_State_Observer_Interface modules
The MC_State_Observer module, designed for permanent-magnet synchronous motors, 
implements a back-emf state observer and a phase-locked loop (PLL). It is able to detect 
rotor angular position and speed.

In addition, the module processes the output data and, by doing so, implements a safety 
feature that detects locked-rotor condition or malfunctioning.

The MC_State_Observer_Interface module acts as an interface with the first, 
providing motor parameters and state observer default gains.

The MC_State_Observer module, which is the engine of the sensorless algorithm, is 
provided as a compiled object file; the source code is available free of charge from ST on 
request: please, contact your nearest ST sales office.
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5.8.1 List of available C functions

The following is a list of available functions as listed in the 
MC_State_Observer_Interface.h and MC_State_Observer.h header files:

● STO_Init on page 114

● STO_StateObserverInterface_Init on page 115

● STO_Obs_Gains_Update on page 115

● STO_Calc_Rotor_Angle on page 115

● STO_Calc_Speed on page 116

● STO_InitSpeedBuffer on page 116

● STO_Get_Electrical_Angle on page 116

● STO_Get_Mechanical_Angle on page 116

● STO_Get_Speed on page 117

● STO_Get_Speed_Hz on page 117

● STO_IsSpeed_Reliable on page 117

● STO_Check_Speed_Reliability on page 117

● STO_Start_Up on page 118

● STO_Get_wIalfa_est on page 118

● STO_Get_wIbeta_est on page 118

● STO_Get_wBemf_alfa_est on page 118

● STO_Get_wBemf_beta_est on page 119

● STO_Gains_Init on page 119

● STO_Gains_Update on page 119

STO_Init

         

Synopsis void STO_Init(void)

Description It initializes to proper values all the variables related to the state observer. To 
be called once before every motor startup.

Input None

Returns None

Note In the demo program, it is called during the INIT state.
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STO_StateObserverInterface_Init

STO_Obs_Gains_Update

STO_Calc_Rotor_Angle

Synopsis void STO_StateObserverInterface_Init(void)

Description This function initializes the Sensorless algorithm according to motor 
parameters, default state observer gain vector (K1,K2) and PLL gains; data 
are retrieved in the MC_State_Observer_param.h, 
MC_PMSM_motor_param.h header files.

Input None

Returns None

Note During runtime, using the STO_Obs_Gains_Update function, it is possible, at 
any time, to overwrite these initial settings, modifying observer and PLL gains.

Synopsis void STO_Obs_Gains_Update(void)

Description The purpose of this function is to modify the state observer and PLL gains, 
previously set by STO_StateObserverInterface_Init.

Input None

Returns None

Note In the demo program, by uncommenting OBSERVER_GAIN_TUNING in 
stm32f10xMCconf.h, it is possible (through STO_Obs_Gains_Update) to 
fine tune the sensorless algorithm.

Synopsis void STO_Calc_Rotor_Angle(Volt_Components Stat_Volt_alfa_beta,                          
Curr_Components Stat_Curr_alfa_beta, s16 hBusVoltage)

Description It is the core of the module as it implements the State observer; this function 
has to be called with the same periodicity of stator current sampling (in the 
demo program, since that periodicity coincides with the FOC execution rate, 
as discussed in Section 4.2, it is called from inside the FOC routine).

It gets the measured stator currents (Stat_Curr_alfa_beta), the applied 
voltage commands (Stat_Volt_alfa_beta), and the measured DC bus voltage 
(hBusVoltage) as inputs at step k; as a result, it carries out step k+1 of the 
discretized state observer equations, thus achieving estimation of the motor 
back-emf (eα and eβ).

Consequently, by means of a numerical PLL, back-emfs are processed to 
calculate rotor speed and angle.

Observed back-emfs, observed rotor angle and speed are written into 
module private variables.

Input Stator voltage commands vα and vβ (s16 format), measured stator currents iα 
and iβ (s16 format), DC bus voltage (s16 format). See MC_type.h for 
structure declarations.

Returns None

Note See Section 2.2 for more information about the sensorless algorithm.
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STO_Calc_Speed

         

STO_InitSpeedBuffer

         

STO_Get_Electrical_Angle

         

STO_Get_Mechanical_Angle

         

Synopsis void STO_Calc_Speed(void)

Description This function has to be called with the timing of the speed loop control (in the 
demo program it is fixed by the PID_SPEED_SAMPLING_TIME parameter).

It undertakes two actions:

● it averages the buffered values of observed speed, storing the result in a 
module private variable;

● it calculates the population variance of that speed buffer: if the variance 
is higher than the threshold settled by VARIANCE_THRESHOLD (see 
Section 4.5.3), then speed estimation is declared “not reliable” and a 
module private flag is raised.

Input None

Returns None

Note None

Synopsis void STO_InitSpeedBuffer(void)

Description This function initializes the buffer used by STO_Calc_Speed to store 
observed rotor speed. To be called once before every motor startup.

Input None

Returns None

Note In the demo program, it is called during the WAIT and FAULT states.

Synopsis s16 STO_Get_Electrical_Angle(void)

Description It returns the rotor electrical angle at step k+1, as STO_Calc_Rotor_Angle 
calculated and stored in a module private variable at time k.

Input None

Returns Observed rotor electrical angle (s16 format)

Note None

Synopsis s16 STO_Get_Mechanical_Angle(void)

Description It returns the rotor mechanical angle at step k+1.

Input None

Returns Observed rotor mechanical angle (s16 format)

Note This function relies on STO_Get_Electrical_Angle.
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STO_Get_Speed

         

STO_Get_Speed_Hz

         

STO_IsSpeed_Reliable

         

STO_Check_Speed_Reliability

         

Synopsis s16 STO_Get_Speed(void)

Description It returns the rotor electrical speed, as STO_Calc_Speed calculated by 
averaging the buffered values of observed speed.

Input None

Returns Observed rotor electrical speed (dpp format)

Note See Section A.7 about the speed format

Synopsis s16 STO_Get_Speed_Hz(void)

Description It returns the rotor mechanical speed.

Input None

Returns Observed rotor mechanical speed (Hz*10).

Note This function relies on STO_Get_Speed.

Synopsis bool STO_IsSpeed_Reliable(void)

Description This routine indicates if the information provided by the sensorless algorithm 
is reliable.
To do so, it checks the module private flag managed by STO_Calc_Speed.

A FALSE statement is an indication of a malfunctioning in the rotor position 
reconstruction due, for example, to an improper choice of the observer 
and/or PLL gains or to a locked-rotor condition.

Input None

Returns Boolean, TRUE if the observer provides reliable data.

Note None

Synopsis bool STO_Check_Speed_Reliability(void)

Description This routine indicates if the information provided by the sensorless algorithm 
has remained reliable over time. It should be called with the same speed 
sampling time periodicity.

STO_IsSpeed_Reliable is called: if that function returns FALSE for 
RELIABILITY_HYSTERESYS (MC_State_Observer_param.h) times, then 
the rotor speed / position detection algorithm is declared not reliable.

Input None

Returns Boolean, TRUE if the observer provides reliable data.

Note This function relies on STO_IsSpeed_Reliable.
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STO_Start_Up

STO_Get_wIalfa_est

STO_Get_wIbeta_est

STO_Get_wBemf_alfa_est

Synopsis void STO_Start_Up(void)

Description This function implements a startup procedure to be used to spin the motor 
when starting from standstill; it has to be called with the same stator currents 
sampling periodicity.

As a result, according to parameters set in MC_State_Observer_param.h 
(see Section 4.5.2), a rotating stator flux is generated by a three-phase 
symmetrical current, thus causing the rotor to follow. During these 
operations, the STO_Calc_Rotor_Angle function is called: if the reliability of 
the observer is within the limits fixed in MC_State_Observer_param.h (see 
Section 4.5.3), the main state machine is allowed to switch to Run.

Input None

Returns None

Note None

Synopsis s16 STO_Get_wIalfa_est(void),

Description This function returns the observed currents iα, as computed at step k by 
function STO_Calc_Rotor_Angle

Input None

Returns Observed currents iα (s16 format).

Note In the demo program, this function is used only to display the variable of 
interest through DAC functionality (if enabled in stm32f10xMCConf.h)

Synopsis s16 STO_Get_wIbeta_est(void)

Description This function returns the observed currents iβ, as computed at step k by 
function STO_Calc_Rotor_Angle

Input None

Returns Observed currents iβ (s16 format).

Note In the demo program, this function is used only to display the variable of 
interest through DAC functionality (if enabled in stm32f10xMCConf.h)

Synopsis s16 STO_Get_wBemf_alfa_est(void)

Description This function returns the observed back-emf eα, as computed at step k by 
function STO_Calc_Rotor_Angle

Input None

Returns Observed back-emf eα (s16 format).

Note In the demo program, this function is used only to display the variable of 
interest through DAC functionality (if enabled in stm32f10xMCConf.h)
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STO_Get_wBemf_beta_est

         

STO_Gains_Init

         

STO_Gains_Update

         

5.9 PID regulators: MC_PID_regulators module
The MC_PID_regulators module contains all the functions required to implement as 
many instances of a PID regulator as required by the application, to control currents IQS and 
IDS, motor speed (in case of Speed control mode) or stator voltages (by means of flux 
weakening for speeds higher than rated).

Note: The differential terms are calculated as an option by uncommenting 
DIFFERENTIAL_TERM_ENABLED in the library configuration file (Section 4.1).

An instance of a PID regulator is created by declaring and initializing a static variable that is 
a structure of the PID_Struct_t type (see MC_type.h for structure declaration).

Synopsis s16 STO_Get_wBemf_beta_est(void)

Description This function returns the back-emf eβ, as computed at step k by function 
STO_Calc_Rotor_Angle

Input None

Returns Observed back-emf eβ (s16 format)

Note In the demo program, this function is used only to display the variable of 
interest through DAC functionality (if enabled in stm32f10xMCConf.h)

Synopsis void STO_Gains_Init(StateObserver_Const* StateObserver_ConstStruct)

Description This function is called by STO_StateObserverInterface_Init to 
initialize the Sensorless algorithm according to default parameters defined in 
MC_State_Observer_param.h

Returns None

Note None

Synopsis void STO_Gains_Update(StateObserver_GainsUpdate* 
STO_GainsUpdateStruct)

Description This function is called by STO_Obs_Gains_Update to modify state observer 
and PLL gains.

Returns None

Note None
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5.9.1 List of available functions

The following is a list of available functions in the MC_PID_regulators module:

● PID_Init on page 120

● PID_Regulator on page 120

● PID_Speed_Coefficients_update on page 121

PID_Init

PID_Regulator

Synopsis void PID_Init (PID_Struct_t *PID_Torque, PID_Struct_t *PID_Flux, 
PID_Struct_t *PID_Speed)

Description The purpose of this function is to initialize the PIDs for current and 
speed regulation. For each, a set of default values is loaded: target 
(speed or current, proportional, integral and derivative gains, lower and 
upper limiting values for the output.

Input PID_Struct_t *, PID_Struct_t *, PID_Struct_t * (see MC_type.h for 
structure declarations)

Functions called None

Note Default values for PID regulators are declared and can be modified in 
the MC_Control_Param.h file (see Section 4.2 on page 46).

Synopsis s16 PID_Regulator(s16 hReference, s16 hPresentFeedback, 
PID_Struct_t *PID_Struct)

Description The purpose of this function is, at a certain step K, to compute the 
output of a PID regulator instance, sum of its proportional, integral and 
derivative terms (the latter is computed if the 
DIFFERENTIAL_TERM_ENABLED option is uncommented, see 
Section 4.1).

Input hReference (the desired setpoint), hPresentFeedback (the measured 
output of the controlled system), PID_Struct_t *PID_Struct (pointer to a 
PID_Struct_t variable which is the regulator instance itself, as it retains 
its gains, internal states, integral sum limits and output limits (see 
MC_type.h for structure declarations).

Output The controller output (signed 16 bits)

Functions called None

Note The demo program has several “instances” of this PID regulator; 
default values for the PID regulation of currents and speed can be 
modified in the MC_Control_Param.h file (see Section 4.2 on page 46). 
The PID_Regulator function updates the internal states of the PID 
regulator instance (integral sum, previous error) through the input 
pointer to the PID_Struct_t variable.
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PID_Speed_Coefficients_update

         

5.9.2 PID regulator theoretical background

The regulators implemented for Torque, Flux and Speed are actually Proportional Integral 
Derivative (PID) regulators (see note below regarding the derivative term). PID regulator 
theory and tuning methods are subjects which have been extensively discussed in technical 
literature. This section provides a basic reminder of the theory.

PID regulators are useful to maintain a level of torque, flux or speed according to a desired 
target.

Figure 67. PID general equation

Equation 1 corresponds to a classical PID implementation, where:

● Kp is the proportional coefficient,

● Ki is the integral coefficient.

● Kd is the differential coefficient.

Note: As mentioned in Figure 67, the derivative term of the PIDs can be disabled (through a 
compiler option, see stm32f10x_MCconf.h file).

Synopsis void PID_Speed_coefficients_update(s16 motor_speed)

Description This function automatically computes the proportional, integral and 
derivative gain for the speed PID regulator according to the actual 
motor speed. The computation is done following a linear curve 
based on 4 set points. See Section 5.9.4 on page 123 for more 
information.

Functions called None

Caution Default values for the four set points are declared and can be 
modified in the MC_Control_Param.h file (see Section 4.2 on page 
46).

torque = f(rotor position)
flux = f(rotor position)

torque = f(rotor speed)

torque and flux regulation for maximum

torque regulation for speed regulation
of the system

system efficiency

Where: Error of the system observed at time t = TErrorsysT

ErrorsysT 1– Error of the system observed at time t = T - Tsampling

f XT( ) Kp ErrorsysT
× Ki Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–( )×+

0

T

∑×+= (1)

Derivative term can be disabled
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5.9.3 Regulator sampling time setting

The sampling time needs to be modified to adjust the regulation bandwidth. As an 
accumulative term (the integral term) is used in the algorithm, increasing the loop time 
decreases its effects (accumulation is slower and the integral action on the output is 
delayed). Inversely, decreasing the loop time increases its effects (accumulation is faster 
and the integral action on the output is increased). This is why this parameter has to be 
adjusted prior to setting up any coefficient of the PID regulator.

In order to keep the CPU load as low as possible and as shown in equation (1) in Figure 67, 
the sampling time is directly part of the integral coefficient, thus avoiding an extra 
multiplication. Figure 68 describes the link between the time domain and the discrete 
system.

Figure 68. Time domain to discrete PID equations

In theory, the higher the sampling rate, the better the regulation. In practice, you must keep 
in mind that:

● The related CPU load will grow accordingly.

● For speed regulation, there is absolutely no need to have a sampling time lower than 
the refresh rate of the speed information fed back by the external sensors; this 
becomes especially true when Hall sensors are used while driving the motor at low 
speed.

As discussed in Section 4.2 on page 46, the speed regulation loop sampling time can be 
customized by editing the PID_SPEED_SAMPLING_TIME parameter in the 
MC_Control_Param.h header file. The flux and torque PID regulator sampling rates are 
given by the relationship

Note: REP_RATE must be an odd number if currents are measured by shunt resistors (see also 
Section A.2 on page 136); its value is 8-bit long.

f XT( ) Kp ErrorsysT
× ki Ts Errorsyst

Kd ErrorsysT
ErrorsysT 1–

–( )×+

0

T

∑×+=

f t( ) Kp Errorsys t( )× Ki Errorsys0

t∫× t( )dt Kd td
d Errorsys t( )( )×+ +=Time domain

Discrete
 domain

ki Ts× Ki=
(sampling done at Fs = 1/Ts frequency)

Flux and torque PID sampling rate 2 PWM_FREQ⋅
REP_RATE 1+
---------------------------------------------=
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5.9.4 Adjusting speed regulation loop Ki, Kp and Kd vs. motor frequency

Depending on the motor frequency, it might be necessary to use different values of Kp, Ki 
and Kd.

These values have to be input in the code to feed the regulation loop algorithm. A function 
performing linear interpolation between four set-points 
(PID_Speed_Coefficient_update) is provided as an example in the software library 
(see MC_PID_regulators.c) and can be used in most cases, as long as the coefficient 
values can be linearized. If that is not possible, a function with a larger number of set-points 
or a look-up table may be necessary.

To enter the four set-points, once the data are collected, edit the MC_Control_param.h 
file and fill in the field dedicated to the Ki, Kp and Kd coefficient calculation as shown below. 

//Settings for min frequency
#define Freq_Min 10 // 1 Hz mechanical
#define Ki_Fmin 1000 // Frequency min coefficient settings
#define Kp_Fmin 2000
#define Kd_Fmin 3000

//Settings for intermediate frequency 1
#define F_1  50 // 5 Hz mechanical 
#define Ki_F_1 2000 // Intermediate frequency 1 coefficient settings
#define Kp_F_1 1000
#define Kd_F_1 2500

//Settings for intermediate frequency 2
#define F_2  200 // 20 Hz mechanical
#define Ki_F_2 1000     // Intermediate frequency 2 coefficient settings
#define Kp_F_2 750
#define Kd_F_2 1200
  
//Settings for max frequency
#define Freq_Max 500 // 50 Hz mechanical
#define Ki_Fmax 500 // Frequency max coefficient settings
#define Kp_Fmax 500
#define Kd_Fmax 500

Once the motor is running, integer, proportional and derivative coefficients are computed 
following a linear curve between F_min and F_1, F_1 and F_2, F_2 and F_max (see 
Figure 69). Note that F_min, F_1, F_2, F_max are mechanical frequencies, with 0.1 Hz 
resolution (for example F_1 = 1234 means F_1 = 123.4Hz).
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Figure 69. Linear curve for coefficient computation

Disabling the linear curve computation routine, stm32f10x_Timebase 
module

If you want to disable the linear curve computation, you must comment out the 
PID_Speed_Coefficients_update(..) routine. In this case, the default values for Ki, 
Kp, Kd for torque, flux and speed regulation are used. See PID_TORQUE_Kx_DEFAULT, 
PID_FLUX_Kx_DEFAULT, PID_SPEED_Kx_DEFAULT, in the MC_control_Param.h file.

To disable the linear curve computation routine in stm32f10x_Timebase.c:

void SysTickHandler(void)
{
    […]
    if ((wGlobal_Flags & SPEED_CONTROL) == SPEED_CONTROL)
    {
      if (State == RUN) 
      {
        //PID_Speed_Coefficients_update(XXX_Get_Speed());//to be commented
        […]        
      }
    }
    […]
}

 Rotor mechanical
frequencyF_maxF_2F_1F_min

Ki_Fmin, Kp_Fmin, Kd_Fmin

Ki_Fmax, Kp_Fmax

Ki_F_1, Kp_F_1, Kd_F_1

Ki_F_2, Kp_F_2, Kd_F_2

Ki, Kp, Kd

Kd_Fmax
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5.10 General purpose time base: stm32f10x_Timebase module
The purpose of the stm32f10x_Timebase module is to generate a time base that can be 
used by the other modules of the applications. 

5.10.1 List of available functions and interrupt service routines

The following is a list of available functions as listed in the stm32f10x_Timebase.h 
header file:

● TB_Init on page 126

● TB_Wait on page 126

● TB_StartUp_Timeout_IsElapsed, TB_Delay_IsElapsed, TB_DisplayDelay_IsElapsed, 
TB_DebounceDelay_IsElapsed on page 127

● TB_Set_Delay_500us, TB_Set_DisplayDelay_500us, TB_Set_StartUp_Timeout, 
TB_Set_DebounceDelay_500us on page 126

● SysTickHandler on page 127
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TB_Init

TB_Wait

TB_Set_Delay_500us, TB_Set_DisplayDelay_500us, 
TB_Set_StartUp_Timeout, TB_Set_DebounceDelay_500us

Synopsis void TB_Init(void)

Description The purpose of this function is to initialize the STM32 system tick 
timer to generate an interrupt every 500 µs, thus providing a 
general purpose timebase.

Input None

Returns None

Functions called SysTick_CLKSourceConfig, SysTick_SetReload, 
SysTick_CounterCmd, NVIC_SystemHandlerPriorityConfig, 
SysTick_ITConfig

Synopsis void TB_Wait(u16 time)

Description This function produces a programmable delay equal to variable 
‘time’ multiplied by 500µs.

Input Unsigned 16 bit 

Returns None

Functions called None

Caution This routine exits only after the programmed delay has elapsed. 
Meanwhile, the code execution remains frozen in a waiting loop. 
Care should be taken when this routine is called at 
main/interrupt level: a call from an interrupt routine with a higher 
priority than the timebase interrupt will freeze code execution.

Synopsis void TB_Set_Delay_500us(u16)

void TB_Set_DisplayDelay_500us(u16)

void TB_Set_StartUp_Timeout(u16)

void TB_Set_DebounceDelay_500us

Description These functions are used to respectively update the values of the 
hTimebase_500us, hTimebase_display_500us, 
hStart_Up_TimeBase_500us and hKey_debounce_500us 
variables. They are used to maintain the main state machine in 
Fault state, to set the refresh rate of the LCD, the Startup timeout 
and, to filter the user key bouncing.

Input Unsigned 16 bits

Returns None

Functions called None
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TB_StartUp_Timeout_IsElapsed, TB_Delay_IsElapsed, 
TB_DisplayDelay_IsElapsed, TB_DebounceDelay_IsElapsed

SysTickHandler

         

Synopsis bool TB_StartUp_Timeout_IsElapsed(void)

bool TB_Delay_IsElapsed(void)

bool TB_DisplayDelay_IsElapsed(void)

bool TB_DebounceDelay_IsElapsed(void)

Description These functions return TRUE if the related delay is elapsed, 
FALSE otherwise. 

Input None 

Returns Boolean

Functions called None

Synopsis void SysTickHandler(void)

Description This is the System Tick timer interrupt routine. It is executed every 
500µs, as determined by TB_Init and is used to refresh various 
variables used mainly as counters (for example, PID sampling 
time). Moreover, if FLUX_TORQUE_PIDs_TUNING is 
uncommented in stm32f10xMCConf, it controls the current 
component reference iq* to generate a square wave of defined 
period (see Section 4.1 and Appendix A.5).

Input None 

Returns None

Functions called If in speed control mode:

FOC_CalcFluxTorqueRef, (PID_Speed_Coefficients_update)

If in torque control mode:

FOC_TorqueCtrl

If Encoder is used:

ENC_Calc_Average_Speed (if using DAC, 
ENC_Get_Mechanical_Speed)

If Hall sensors are used:

(if using DAC, HALL_GetSpeed)

if using the sensorless algorithm:

STO_Calc_Speed, STO_Check_Speed_Reliability, 
MCL_SetFault, STO_Obs_Gains_Update (if using DAC, 
STO_Get_Speed)

Note This is an interrupt routine
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5.11 Power stage check-up: MC_MotorControl_Layer module

5.11.1 List of available functions

The following is a list of available functions as listed in the MC_MotorControl_Layer.h 
header file:

● MCL_Init on page 128

● MCL_ChkPowerStage on page 129

● MCL_ClearFault on page 129

● MCL_SetFault on page 129

● MCL_Chk_OverTemp on page 130

● MCL_Chk_BusVolt on page 130 

● MCL_Compute_BusVolt on page 130

● MCL_Compute_Temp on page 130

● MCL_Calc_BusVolt on page 131

● MCL_Calc_BusVolt on page 131

● MCL_Init_Arrays on page 131

● MCL_Brake_Init on page 131

● MCL_Set_Brake_On on page 132

● MCL_Set_Brake_Off on page 132

MCL_Init

         

Synopsis void MCL_Init(void)

Description This function implements the motor control initializations to be 
performed at each motor start-up; it affects PID regulators, current 
reading calibration, speed sensors and high side driver boot 
capacitors initializations.

Functions called ENC_Clear_Speed_Buffer or HALL_InitHallMeasure and
HALL_Init_Electrical_Angle or STO_Init depending on the speed 
feedback configured, TB_Set_StartUp_Timeout, 
TIM1_CtrlPWMOutputs, TB_StartUp_Timeout_IsElapsed, 
SVPWM_3ShuntCurrentReadingCalibration or 
SVPWM_IcsCurrentReadingCalibration depending on the current 
feedback configuration, SVPWM_3ShuntCalcDutyCycles or 
SVPWM_IcsCalcDutyCycles depending on the current feedback 
configuration

Input None

Returns None
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MCL_ChkPowerStage

         

MCL_ClearFault

         

MCL_SetFault

         

Synopsis void MCL_ChkPowerStage(void)

Description This function performs checks of the power stage working conditions 
(only for temperature and bus voltage) and, when required, 
generates a FAULT event

Functions called MCL_Chk_OverTemp, MCL_Chk_BusVolt, MCL_SetFault,

Input None

Returns None

Synopsis bool MCL_ClearFault(void)

Description This function checks if the cause of the fault event is over. In the 
positive, and if the ‘Key’ button has been pressed, the related flag is 
cleared and a TRUE is returned. Otherwise a FALSE is returned.

Functions called TB_Delay_IsElapsed, MCL_Chk_BusVolt, MCL_Chk_OverTemp, 
GPIO_ReadInputDataBit, KEYS_ExportbKey

Input None

Returns TRUE if all the fault flags are cleared and the ‘Key’ button has been 
pressed by the user, FALSE otherwise.

See also Section 3.8: Fault messages.

Synopsis void MCL_SetFault (u16)

Description On occurrence of a fault event, this function puts the main state 
machine in Fault state and disables the motor control outputs of 
Advanced Control Timer TIM1 (PWM timer).

Functions called TB_Set_Delay_500us, TIM1_CtrlPWMOutputs, 
SVPWM_3ShuntAdvCurrentReading in case of three shunt current 
reading configuration

Input Source of fault event as defined in MC_const.h.

Returns None

See also Section 3.8: Fault messages.
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MCL_Chk_OverTemp

         

MCL_Chk_BusVolt

         

MCL_Compute_BusVolt

         

MCL_Compute_Temp

         

Synopsis bool MCL_Chk_OverTemp(void)

Description This function performs the averaging of the latest temperature acquired value 
by means of the following formula:
XAV(K) = (XAV(K-1)* (T_AV_ARRAY_SIZE-1)+ X(K) )/ 
T_AV_ARRAY_SIZE, where XAV(K) is the average at step K, and X(K), the 
latest measurement at step K.
Once the average has been performed, the function checks whether the 
acquired temperature is within the admitted range or not. The intervention 
threshold and hysteresis values can be adjusted in MC_Control_Param.h 
(only for MB459 board).

Input None

Returns Returns TRUE if the software-averaged voltage on the thermal resistor 
connected to ADC channel ADC_IN10 has reached the threshold level (or if it 
has not yet returned to the threshold level minus the hysteresis value after an 
overheat detection). Returns FALSE otherwise.

Synopsis BusV_t MCL_Chk_BusVolt(void)

Description This function checks for over and under voltage faults on inverter DC 
bus. The intervention thresholds can be defined in 
MC_Control_Param.h (only for MB459 board).

Functions called None

Input None

Returns It returns a BusV_t type variable reporting the fault value

Synopsis u16 MCL_Compute_BusVolt(void)

Description This function computes the DC bus voltage in volt units. In the 
proposed firmware library this function is utilized for user interfacing.

Input None

Returns Bus voltage in volt units

Synopsis u8 MCL_Compute_Temp(void)

Description This function computes the power stage heat-sink temperature in Celsius 
degrees (only for MB459 board). In the proposed firmware library this 
function is utilized for user interfacing.

Input None

Returns An integer representing a temperature value expressed in Celsius degrees.



UM0492 Library functions

 131/148

MCL_Calc_BusVolt

         

MCL_Calc_BusVolt

         

MCL_Init_Arrays

         

MCL_Brake_Init

         

Synopsis void MCL_Calc_BusVolt(void)

Description This function performs the averaging of the latest 
BUS_AV_ARRAY_SIZE temperature measurement by means of the 
following formula:
XAV(K) = (XAV(K-1)* (BUS_AV_ARRAY_SIZE-1)+ X(K))/ 
BUS_AV_ARRAY_SIZE, where XAV(K) is the average at step K, and 
X(K), the latest measurement at step K.

Input None

Returns None, the averaged value is written into a module private variable

Synopsis s16 MCL_Get_BusVolt(void)

Description This function simply exports the averaged value of the bus voltage 
private variable.

Input None

Returns Bus voltage in digits.

Synopsis void MCL_Init_Arrays(void)

Description This function initializes the averaged values of both voltage and 
temperature. To be called after a MCU reset.

Input None

Returns None

Synopsis void MCL_Brake_Init(void)

Description Declared and defined only if the brake resistor feature has been 
enabled in stm32_MCconf.h, this function initializes the GPIO pin 
driving the switch for resistive brake implementation 
(BRAKE_GPIO_PORT, BRAKE_GPIO_PIN are defined in 
MC_MotorControl_Layer.c). To be called after MCU reset. 

Input None

Returns None

See also Section 3.14 for more detailed information on how to set up your 
system when using brake resistor.
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MCL_Set_Brake_On

         

MCL_Set_Brake_Off

         

5.12 Main interrupt service routines: stm32f10x_it module
The stm32f10x_it module can be used to describe all the exception subroutines that 
might occur within your application. When an interrupt happens, the software will 
automatically branch to the corresponding routine accordingly with the interrupt vector table. 

With the exception of the ADC, TIM1 Break Input and TIM1 update (if in shunt current 
reading mode) interrupt requests, all the routines are empty, so that you can write your own 
code for exception handlers and peripheral interrupt requests.

Synopsis void MCL_Set_Brake_On(void)

Description Declared and defined only if the brake resistor feature has been 
enabled in stm32_MCconf.h, it switches on the brake resistor by 
setting the BRAKE_GPIO_PIN pin of the BRAKE_GPIO_PORT 
port. The function is called in ADC_IRQHandler every time an 
analog watchdog interrupt occurs.

Input None

Returns None

See also Section 3.14 for more detailed information on how to set up your 
system when using brake resistor.

Synopsis void MCL_Set_Brake_Off(void)

Description Declared and defined only if the brake resistor feature has been 
enabled in stm32_MCconf.h, this switch off the brake resistor by 
setting to zero the pin BRAKE_GPIO_PIN of port 
BRAKE_GPIO_PORT. The function is called in ADC_IRQHandler if 
both the brake was turned on and the bus voltage went down the 
threshold specified by BRAKE_HYSTERESIS.

Note BRAKE_HYSTERESIS is defined in stm32f10x_it.c and its default 
value is 15/16 the over-voltage intervention threshold

Input None

Returns None

See also Section 3.14 for more detailed information on how to set up your 
system when using brake resistor.
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5.12.1 List of non-empty interrupt service routines

As mentioned above only three interrupts are managed by motor control tasks: 

● TIM1_BRK_IRQHandler on page 133

● TIM1_UP_IRQHandler on page 133

● ADC1_2_IRQHandler on page 134

TIM1_BRK_IRQHandler

         

TIM1_UP_IRQHandler

         

Synopsis void TIM1_BRK_IRQHandler(void)

Description The purpose of this function is to manage a break event on the 
dedicated BREAK pin. In particular, TIM1 outputs are disabled, the 
main state machine is put into FAULT state.

Input None.

Returns None.

Functions called MCL_SetFault, TIM1_ClearPendingBit

See also Advanced control timer (TIM1) in STM32F103xx reference manual

Synopsis void TIM1_UP_IRQHandler(void)

Description This interrupt handler is executed after an update event when an 
underflow of the TIM1 counter occurs. Inside this handler, the 
specific SVPWMUpdateEvent routine related to the selected 
current sampling method (single-shunt, three-shunt or ICS) is 
called.

Input None.

Returns None.

Functions called ADC_ClearFlag, TIM1_ClearFlag, SVPWMUpdateEvent
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ADC1_2_IRQHandler

Synopsis void ADC1_2_IRQHandler(void)

Description The purpose of this function is to handle the ADC global interrupt 
request.
Two different possible interrupt sources are managed: JEOC (end of 
conversion injected group), AWD (analog watchdog).

JEOC: if the main state machine is in the Start state, it triggers the 
motor startup procedure (which depends upon the system 
configuration, see Section 4.1); otherwise, if the state is Run, it 
triggers the execution of the FOC algorithm.
If the system configuration includes the brake resistor (see 
Section 3.14), it manages its hysteresis switching (in case of 
overvoltage).
If the DAC functionality is enabled (see Section 3.6), it updates the 
value of the variables of interest.

AWD: in the event of an overvoltage, it switches on the brake resistor 
or generates a fault (OVER_VOLTAGE) depending on whether 
BRAKE_RESISTOR is commented in stm32f10x_MCconf.h, see 
Section 4.1 and Section 3.14). Inside the handler, the specific 
SVPWMEOCEvent routine related to the current sampling method 
(single-shunt, three-shunt or ICS) is called. This routine returns true 
if the current sampling has completed for this PWM period, so that 
the FOC-related routines can be executed.

Input None.

Returns None.

Functions called SVPWMEOCEvent, FOC_Model, ADC_GetITStatus, 
ADC_ClearFlag, MCL_Calc_BusVolt, MCL_SetFault;

if using a brake resistor:

ADC_GetInjectedConversionValue, MCL_Set_Brake_On, 
MCL_Set_Brake_Off;

if enabling the DAC functionality:

MCDAC_Update_Value, MCDAC_Update_Output;

if using an encoder:

ENC_Start_Up (and, if using DAC, ENC_Get_Electrical_Angle);

if using Hall sensors:

(if using DAC, HALL_IncElectricalAngle, HALL_GetElectricalAngle); 

if using the sensorless algorithm:

STO_Start_Up, STO_Calc_Rotor_Angle, MCL_Get_BusVolt (and, if 
using DAC, STO_Get_Electrical_Angle, STO_Get_wIalfa_est, 
STO_Get_wIbeta_est, STO_Get_wBemf_alfa_est, 
STO_Get_wBemf_beta_est)

See also  Section 5.1 and Section 5.3 for more details.
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Appendix A Additional information

A.1 Adjusting CPU load related to FOC algorithm execution
The advanced control timer (TIM1) peripheral has the built-in capability of updating PWM 
registers only after a given number of PWM semi-periods. This feature is handled by a 
programmable repetition counter. It is particularly useful to adjust the CPU load related to 
FOC algorithm execution for a given PWM frequency (refer to STM32F103xx reference 
manual for more information on programmable repetition counter).

When using ICS, the injected chain of conversions for current reading is directly triggered by 
a PWM register update event. Moreover, since the FOC algorithm is executed at the end of 
the injected chain of conversions in the related ISR, changing repetition counter has a direct 
impact on FOC refresh rate and thus on CPU load.

However, in the case of single- or three-shunt topology current reading, to ensure that the 
FOC algorithm is executed once for each PWM register update, it is necessary to keep the 
synchronization between current conversions triggering and PWM register update. In the 
proposed software library, this is automatically performed, so that you can reduce the 
frequency of execution of the FOC algorithm by simply changing the default value of the 
repetition counter (the REP_RATE parameter in the MC_Control_Param.h header file). 
Figure 70 shows current sampling triggering, and FOC algorithm execution with respect to 
PWM period when REP_RATE is set to 3.

Figure 70. AD conversions for three shunt topology stator currents reading and
FOC algorithm execution when REP_RATE=3 and PWM frequency>18 kHz

Note: Because three shunt resistor topology requires low side switches to be on when performing 
current reading A/D conversions, the REP_RATE parameter must be an odd number in this 
case.

Considering that the raw FOC algorithm execution time is about 20 µs in sensorless and 
three shunt resistor current reading configuration, the related contribution to CPU load 
can be computed as follows: 
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A.2 Selecting the update repetition rate based on the PWM
frequency for single- or three-shunt resistor configuration
Beyond the well known trade-off between acoustical noise and power dissipation, 
consideration should be given to selecting the PWM switching frequency using the PMSM 
FOC software library. 

As discussed in Section 5.1.4 on page 69 and Section 5.2.4 on page 82, depending on the 
PWM switching frequency, a limitation on the maximum applicable duty cycle could occur if 
using single- or three-shunt resistor configuration for current reading. Table 2: PWM 
frequency vs. maximum duty cycle relationship for three-shunt  topology on page 73 and 
Table 4: PWM frequency vs. maximum duty cycle relationship for single-shunt  topology on 
page 82 summarize the performance of the system when the software library is used in 
conjunction with STM3210B-MCKIT hardware. 

Note: The MB459 board is an evaluation platform; it is designed to support different motor driving 
topologies (PMSM and AC induction) and current reading strategies (single and three shunt 
resistors). Therefore, the figures given in Table 2 on page 73 and Table 4 on page 82 should 
be understood as a starting point and not as a best case.

Moreover, in order to guarantee the proper working of the algorithm and be sure that the 
new computed duty cycles will be applied in the next PWM period, it is always necessary to 
finish executing the FOC algorithm before the next PWM U event begins as shown in 
Figure 71. 

Figure 71. AD conversions for three shunt topology stator currents reading and
FOC algorithm execution

In the three-shunt resistor configuration, considering that as seen in Section 5.1.4, the ADC 
conversions are triggered latest (DT+TN-TS)/2 after the TIM1 counter overflow, and 
considering the time required for the A/D converter to perform injected conversions, it can 
been stated that the FOC algorithm is started about 5 µs after the TIM1 counter overflow 
(worst case). Furthermore, given that the execution time of the FOC algorithm is around 
20 µs, in sensorless configuration, to compute the new duty cycle values before the next 
update event, it is necessary to guarantee a minimum duty cycle period of about 
(5 + 20) × 2 µs, that is, a maximum achievable FOC execution rate of about 20 kHz. The 
repetition counter (REP_RATE) can therefore be set to 1.

For PWM frequencies higher than 20 kHz, the repetition counter must be set to 3 
(REP_RATE= 3). If PWM frequencies higher than 17.5 kHz are used, please see 
Section 5.5.3 to calculate a suitable MMI for MC_Control_Param.h.
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For single-shunt current reading, see Table 4: PWM frequency vs. maximum duty cycle 
relationship for single-shunt  topology on page 82 for the minimum repetition rate (A.8: MMI 
(maximum modulation index): automatic calculation explains how to calculate the MMI 
(maximum modulation index) for given PWM frequency and noise parameters.).

A.3 Fixed-point numerical representation
The PMSM FOC software library uses fixed-point representation of fractional signed values. 
Thus, a number n is expressed as , where m is the integer part (magnitude) and f 
the fractional part, and both m and f have fixed numbers of digits.

In terms of two’s complement binary representation, if a variable n requires QI bits to 
express - as powers of two - its magnitude (of which 1 bit is needed for the sign), QF bits – 
as inverse powers of two - for its fractional part, then we have to allocate QI + QF bits for that 
variable.

Therefore, given a choice of QI and QF, the variable representation has the following 
features:

● Range: -2(QI-1) < n < 2(QI-1) – 2(-QF);

● Resolution: = 1 / 2QF.

The equation below converts a fractional quantity q to fixed-point representation n: 

A common way to express the choice that has been made is the “q QI.QF” notation.

So, if a variable is stored in q3.5 format, it means that 3 bits are reserved for the magnitude, 
5 bits for the resolution; the expressible range is from -4 to 3.96875, the resolution is 
0.03125, the bit weighting is: 

This software library uses the PU (“Per Unit”) system to express current values. They are 
always referred to a base quantity that is the maximum measurable current Imax (which, for 
the proposed hardware, can be estimated approximately at Imax = 0.6 / Rshunt); so, the “per 
unit” current value is obtained by dividing the physical value by that base:

In this way, ipu is always in the range from -1 to +1. Therefore, the q1.15 format, which 
ranges from -1 to 0.999969482421875, with a resolution of 0.000030517578125, is perfectly 
suitable (taking care of the overflow value (-1)·(-1)=1) and thus extensively used.

Thus, the complete transformation equation from SI units is:
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value -4 2 1 1/2 1/4 1/8 1/16 1/32

n m f⋅=

n floor q 2QF⋅( )=
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A.4 A priori determination of flux and torque current PI gains
The aim of this appendix is to provide a criterion for the computation of the initial values of 
the torque/flux PI parameters (KI and KP). Appendix A.5 discusses the way of fine-tuning 
them.

To calculate these starting values, it is required to know the electrical characteristics of the 
motor: stator resistance Rs and inductance Ls and the electrical characteristics of the 
hardware: shunt resistor RShunt, current sense amplification network AOp and the direct 
current bus voltage VBusDC.

The derivative action of the controller is not considered using this method.

Figure 72 shows the PI controller block diagram used for torque or flux regulation.

Figure 72. Block diagram of PI controller

For this analysis, the motor electrical characteristics are assumed to be isotropic with 
respect to the q and d axes. So, it is assumed that the torque and flux regulators have the 
same starting value of KP, and that they also have the same KI value.

Figure 73 shows the closed loop system in which the motor phase is modelled using the 
resistor-inductance equivalent circuit in the “locked-rotor” condition. 

Block “A” is the proportionality constant between the software variable storing the voltage 
command (expressed in digit) and the real voltage applied to the motor phase (expressed in 
Volt). Likewise, block “B” is the is the proportionality constant between the real current 
(expressed in Ampere) and the software variable storing the phase current (expressed in 
digit).

Figure 73. Closed loop block diagram
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The transfer functions of the two blocks “A” and “B” are expressed by the following formulas:

 and , respectively.

By putting KP/KI = LS/RS, it is possible to perform pole-zero cancellation as described in 
Figure 74.

Figure 74. Pole-zero cancellation

In this condition, the closed loop system is brought back to a first-order system and the 
dynamics of the system can be assigned using a proper value of KI. See Figure 75.

Figure 75. Block diagram of closed loop system after pole-zero cancellation

It is important to note that the KI and KP parameters used inside the PI algorithms will be 
scaled using the proper divider. The KPDIV and KiDIV dividers are defined in 
MC_Control_Param.h (like TF_KPDIV, TF_KIDIV, TF_KDDIV) so the computed values of KP 
and KI must be multiplied by these factors.

Moreover the PI algorithm does not include the PI sampling time (T) in the computation of 
the integral part. See the following formula:

Since the integral part of the controller is computed as a sum of successive errors, it is 
required to include T in the KI computation.

So the final formula can be expressed as: 

A
VBusDC

216
----------------------= B

RshuntAop216

3.3
------------------------------------=

eTarget
current

Measured
current

Voltage
command+

-
A

1

B

V I

I

PI

K

K

s

K

ai14852

Rs

LsRs(1 + s )
(1 + s )

Target
current

+

-
A Rs

1

B

V I

s
KI

Target
current

s
ABK

RsB

I

 
 
1

11
I

Target
current

+

-
A

Rs

1

B

V I

s

KI

Target
current

s
ABK

RsB

I

 
. 
1 +

11
I

ai14853

ki e τ( ) τd

0

t

∫ kiT e kT( )

k 1=

n

∑ Ki e kT( )

k 1=

n

∑= =

KP LS

ωC

AB
--------KPDIV

Ki

RS ωC KiDIV⋅ ⋅
AB

--------------------------------------------- T

AB
VBusDC Rshunt Aop⋅ ⋅

3.3
----------------------------------------------------------------=

⋅=

=



Additional information UM0492

140/148   

Usually, it is possible to set ωC (the bandwidth of the closed loop system) to 1500 rad/s, to 
obtain a good trade-off between dynamic response and sensitivity to the measurement 
noise.

The Aop measured for the MB459 is 2.57. It is then possible to compute the values of the 
parameters knowing the motor parameters (RS, LS), VBUSDC and RShunt.

A.5 Current regulators fine tuning
To fine-tune the current regulator, it is required to start with the parameters (KI and KP) 
computed following the instruction of appendix A.4: A priori determination of flux and torque 
current PI gains. 

Then, starting from the default configuration of stm32f10x_MCconf.h, follow the following 
steps:

● Fill the “power devices parameters”, “current regulation parameters”, “power board 
protections thresholds”, and “speed loop sampling time” sections of 
MC_Control_Param.h as described in Section 4.2.

● In stm32f10x_MCconf.h, select the kind of sensor to be used during the development 
stage of your design and fill the related header file (MC_encoder_param.h or 
MC_hall_param.h) as described in Section 4.3 or Section 4.4. The tuning of the current 
regulators is not supported in sensorless configuration.

● Fill in NOMINAL_CURRENT and POLE_PAIRS in MC_PMSM_motor_param.h.

● Uncomment FLUX_TORQUE_PIDs_TUNING. A firmware generating a square-wave-
shaped reference torque will be generated.

Note: The firmware generated when FLUX_TORQUE_PIDs_TUNING is not commented must be 
run only in Torque control mode.

A square-wave amplitude and period can be selected by editing PID_TORQUE_REFERENCE 
and SQUARE_WAVE_PERIOD parameters in MC_Control_Param.h.

The goal is to tune the torque and flux current components PIDs in real time. For this 
purpose, the user can for instance look at the real and measured Iq current using DAC 
functionality, and slightly change the torque PI(D) gains with respect to the default values in 
order to have a quick response to a step of target Iq without overshoots. The same PI(D) 
gains could then also be used in the flux loop.

Figure 76 and Figure 77 show two oscilloscope acquisition. In both acquisitions, the C1 
channel is the PB0 pin output and the C2 channel is the PB1 pin output.

The DAC functionality was used to output two internal variables; in this case PB0 is the 
reference Iq and PB1 is the measured Iq.

Note: The PB0 and PB1 signals were analog- and digital-filtered.

It is possible to see in Figure 76 that the measured Iq has an overshoot with respect to the 
reference Iq. In this case, the PI parameter was set to KP = 8000 and KI = 2000.

To reduce this overshoot it is required to decrease KI while keeping KP constant. This is how 
the condition of Figure 77 with KP = 8000 and KI = 1000 is obtained.

It is possible to see that in Figure 77 the response of the current control is slower than in 
Figure 77. So it is possible to increase the speed of the system by increasing KP and KI and 
keeping the ratio constant.
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Figure 76. KP = 8000 and KI = 2000
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Figure 77. KP = 8000 and KI = 1000

A.6 A priori determination of state observer gains
In order to speed up the sensorless system development, the user can follow the procedure 
described in this appendix to calculate the initial values of the state observer gains, K1 and 
K2. Furthermore, thanks to the implemented progressive system development described in 
Section 3.13, it is possible to get the best possible tuning for K1 and K2.

The computation of the initial values of K1 and K2 is based on the placement of the state 
observer eigenvalues. The required motor parameters are rs (motor winding resistance), Ls 
(motor winding inductance), T (sampling time of the sensorless algorithm, which coincides 
with FOC and stator currents sampling, as discussed in Section 4.2).

The motor model eigenvalues could be calculated as:

The observer eigenvalues are placed with:

e1 1
rsT

Ls
--------

e2 1=

–=

e1obs

e1

f
------

e2obs
e2

f
------=

=
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Typically, by rule of the thumb, the user can set f = 4;

Then, the initial values of K1 and K2 could be calculated as: 

Finally, K1 and K2 could be used to fill in MC_State_Observer_param.h (see Section 4.5.1).

A.7 Speed formats
Two speed formats are commonly utilized in the PMSM FOC firmware library:

● 0.1 Hz: this format is normally utilized by the speed regulators and by the highest layer 
of the software (for user interfacing for instance).

● digit per PWM (dpp): the dpp format expresses the speed as the variation of the 
electrical angle (expressed in s16 format) within a PWM period. This format is 
particularly convenient since the rotor angular position can be easily determined by 
accumulating the rotor speed information every time the control loop is executed (for 
example, during PWM update interrupt service routine). Providing that 2n = 0xFFFF (so 
that angle roll-overs do not need to be managed), the frequency with 0.1 Hz unit can 
easily be converted into dpp format using the following formula:

, where:

– SAMPLING_FREQ is the FOC sampling rate (automatically computed in pre-
compilation phase starting from REP_RATE and PWM_FREQ)

A.8 MMI (maximum modulation index): automatic calculation
It is possible to customize the maximum modulation index versus PWM frequency table 
using the provided tool.

To do so, open the MMIvsPWMFreq.exe file (the file location is STM32MC-KIT\design 
tools\).

Then, set the desired current-reading method: Single-shunt or Three-shunt, and fill the 
required fields with the customized parameters as shown in Figure 78.

The MMI field will then indicate the maximum modulation index allowable for the selected 
PWM frequency (PWM Freq field) based on the given noise parameter values (T Noise, T 
Rise), A/D converter settings and Dead Time value.

K1
e1obs e2obs 2–+

T
---------------------------------------------

rs

Ls
-----

K2
Ls 1 e1obs– e2obs– e1obse2obs+( )

T2
-----------------------------------------------------------------------------------------=

+=

ωdpp ω0.1 Hz
65536

10 SAMPLING_FREQ⋅
-----------------------------------------------------------------⋅=



Additional information UM0492

144/148   

Figure 78. Maximum modulation index configuration tool

It is then possible to generate the new MMI vs. PWM frequency table.

To do so, in the Maximum modulation index configuration tool window (Figure 78), set the 
minimum PWM frequency of the table in the Fpwm lower limit field, set the maximum PWM 
frequency of the table in the Fpwm upper limit field and set the frequency step used to 
calculate the table in the Step field. Then press the MMI vs. PWM freq button and the 
dialog box shown in Figure 79 will appear.

Figure 79. MMI vs. PWM freq. define table

The generated values can be copied and pasted into the MC_Control_Param.h file. The 
selected PWM frequency must then be uncommented.
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