Answer to question about AN2450

Agrate, 10 Feb 2020

AN2450 question

- From equation (40) and (41) we get relationship (a):
(40) $I_{Z V S}=C_{Z V S} \frac{V_{d c}}{T_{D}}$
$\rightarrow \quad \sin \Phi=\frac{C_{Z V S} V_{d c}}{\sqrt{2} I_{r t} T_{D}}$
(41) $I_{Z V S}=\sqrt{2} I_{r t} \sin \Phi$
- From equation (3) and (42) we get relationship (b):
(3) $\quad V_{i . F H A}=\frac{\sqrt{2}}{\pi} V_{d c}$
$\Rightarrow \quad \cos \Phi=\frac{\pi P_{\text {in }}}{\sqrt{2} I_{r t} V_{d c}}$
(42) $\quad I_{\text {act }}=I_{r t} \cos \Phi=\frac{P_{\text {in }}}{V_{i . F H A}}$

AN2450 question

- From relationships (a) and (b) we get the equality in equation (45):

$$
\tan \Phi=\frac{\sin \Phi}{\cos \Phi}=\frac{C_{Z V S}}{\pi T_{D}} \frac{V_{d c}^{2}}{P_{i n}}
$$

- From a physical stand point, the resonant tank current anticipation (with respect to the half bridge node \rightarrow i.e. the angle Φ and therefore also $\tan \Phi$) has to be at least what calculated by the above relationship.
- The meaning is that, in order to get ZVS, the resonant tank recirculating current ($\mathrm{l}_{\text {zvs }}$) has to be sufficiently high (far from zero) during the time period during which the HB node swings rail-to-rail.

