

Agrate, 10 Feb 2020

AN2450 question

From equation (40) and (41) we get relationship (a):

(40)
$$I_{ZVS} = C_{ZVS} \frac{V_{dc}}{T_D}$$

$$\Rightarrow \qquad \sin \Phi = \frac{C_{ZVS} V_{dc}}{\sqrt{2} I_{rt} T_D}$$
(41) $I_{ZVS} = \sqrt{2} I_{rt} \sin \Phi$

From equation (3) and (42) we get relationship (b):

(3)
$$V_{i.FHA} = \frac{\sqrt{2}}{\pi} V_{dc}$$
 \Rightarrow $cos\Phi = \frac{\pi P_{in}}{\sqrt{2} I_{rt} V_{dc}}$ (b) (42) $I_{act} = I_{rt} cos\Phi = \frac{P_{in}}{V_{i.FHA}}$

AN2450 question

• From relationships (a) and (b) we get the equality in equation (45):

$$tan\Phi = \frac{sin\Phi}{cos\Phi} = \frac{C_{ZVS}}{\pi T_D} \frac{V_{dc}^2}{P_{in}}$$

- From a physical stand point, the resonant tank current anticipation (with respect to the half bridge node \rightarrow i.e. the angle Φ and therefore also tan Φ) has to be at least what calculated by the above relationship.
- The meaning is that, in order to get ZVS, the resonant tank recirculating current $(I_{7/5})$ has to be sufficiently high (far from zero) during the time period during which the HB node swings rail-to-rail.

