l_ UM1076
YI User manual

C Library for ST7590 and STM32™

1 Introduction

This document describes the library (driver) for interfacing STMicroelectronics™ power line
modem demonstration board (EVALST7590), with an STM32 microcontroller. This helps the
developer to test the solution and more quickly design their application. The library is
designed to be universal and easily adapted to any microcontroller with minor changes.
The minimum requirements for the microcontroller are a UART and a timer. The library was
tested and compiled for the STM32 microcontroller in IAR™ programming environment.

For example, the complete communication node shown in Figure 5 (containing the ST7590
demonstration board (EVALST7590-1) and a microcontroller connectivity gateway
demonstration board (STEVAL-PCC012V1) is used. An example application, which is part
of the library, can be run on the mentioned communication node directly without any
necessary adaptations. The example shows communication between the nodes, where the
service and base node establish a logical connection. The service node periodically sends,
every two seconds, a message which is received by the base node. Both service node and
base node indicate sending or receiving of the packet by toggling of the LED.

The library implements all the ST7590 commands that this device offers. The library was
tested on this communication node.

The use of this library with other platforms and microcontrollers and its interconnection is
described in the ST7590 databrief, the UM1038 user manual, and the ST7590 datasheet
and product related documents.

November 2011 Doc ID 018752 Rev 1 1/26

www.st.com

http://www.st.com

Contents UM1076

Contents
1 Introduction i i i i r i ar e 1
2 Librarydetailscccoiiiiii i e e 5
3 Modemcommandsciiiirnnnrennnnnrcnnnnnnnns 6
4 Global data structure (incmd_msg.h)ot 7
5 Commandscciii it it ittt et a e 9
5.1 cmAd_msg.h ... 9
5.2 MAC_MLME.h e 10
5.3 MAC_Data.h e 10
5.4 MAC_Establish.h e 11
5.5 MAC_Release.h e 11
6 Library supportfilescciiiiiiii it 13
6.1 time_counter.h e 13
6.2 history.h ... 14
6.3 serial_port.h 14
6.4 Stm32_uart.h e 15
7 Communicationexampleccciiiiiiiiiiiirinnnnnnnnns 17
71 Application - flowchart 17
7.2 Communication - sequencecharts 18
7.3 0= o 19
7.4 functions.C 20
8 Real applicationccoiiiiiii i s e 24
9 Revision history e 25

2/26 Doc ID 018752 Rev 1 KYI

UM1076

List of tables

List of tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Assignment of command names to the library files 6
Example of the field description and its linktothe commands 8
Steps used to communicate withthe modem 9
Available commands incmd_msg.cfile 9
Available commands in MAC_MLME.cfile. 10
Available commands in MAC_Data.cfile 10
Available commands in MAC_Establish.cfile. 11
Available commands in MAC_Release.cfile 11
Document revision history 25

Doc ID 018752 Rev 1 3/26

List of figures UM1076

List of figures

Figure 1. Communication example: application flowchart 17
Figure 2. Device registration sequence chart i 18
Figure 3. Logical connection establishment sequencechart. 19
Figure 4. EVALST7590 and STEVAL-PCC012V1, block diagram. 24
Figure 5. EVALST7590 and STEVAL-PCCO012V1, real application. 24

4/26 Doc ID 018752 Rev 1 KYI

UM1076 Library details

2 Library details

Project created in: 1AR programming environment version 5.50
Target processor: Any, project tested on STM32

Language: C language

Reference: ST7590 databrief

ST7590 datasheet and product related documents - for all details
regarding the commands

UM1038 - hardware interconnection of the STM32™, SPEAr™3xx, and
ST75xx.

IYI Doc ID 018752 Rev 1 5/26

Modem commands

UM1076

3

6/26

Modem commands

This section shows all the commands available with their codes together with corresponding
flenames that the commands are located in. The library implements all the commands the

modem offers.

Table 1 shows in which library file the specific command can be found. The “xxx” in the
command name stands for: request, response, indication or confirm.

Table 1.

Assighment of command names to the library files

Command group

Command codes

Filename

CL432_Establish_xxx

<0xAO0> <OxA1>

CL432_Establish.c

CL432_Release_xxx

<0xA2> <0xA3>

CL432_Release.c

CL432_Join_xxx <0OxA4> CL432_Join.c
CL432_Leave_xxx <OxA5> CL432_Leave.c
CL_432_GetSNSession <0xB4> CL432_GetSNS.c
DL_Data_xxx <0xA6> <OxA7> <0OxA8> DL_Data.c
DL_Broadcast_xxx <0xA9> DL_Broadcast.c
DL_Reply_xxx <OxAA> <0xAB> <OxAC> DL_Reply.c
DL_UpdateReply_xxx <0xAD><0xAE><0xAF> DL_UpdateReply.c
PIB_LIST_GET_xxx <0xB1><0xB2> PIB_LIST_GET.c
PIB_GET_xxx <0xB5><0xB6> PIB_GET.c
PIB_SET_xxx <0xB7><0xB8> PIB_SET.c
MAC_MLME_REGISTERSTATE_Indication!) |<0xB9> MAC_MLME.c
MAC_TESTmode <OxBA> MAC_TESTmode.c

MAC_Establish_xxx

<0xC1><0xC2><0xC3><0xC4>

MAC_Establish.c

MAC_Relase_xxx <0xC5><0xC6><0xC7> MAC_Release.c
MAC_Join_xxx <0xC8><0xC9><0xCF><0xD0> |MAC_Join.c
MAC_Leave_xxx <0xCA><0xCB><0xDA> MAC_Leave.c
MAC_Data_xxx <0xCC><0xCD><0xCE> MAC_Data.c
MAC_Unregister_xxx <0xD1><0xD2><0xD3> MAC_Unregister.c
MAC_Promotion_xxx <0xD4><0xD5><0xD6> MAC_Promote.c
MAC_Demotion_xxx <0xD7><0xD8><0xD9> MAC_Demote.c
PHY_DATAxxx <0XE1><0xE2><0xE3> PHY_Data.c
PRIME_GetState, PRIMEConfig, SW_Reset |<0xB0><0xB3><0x90> cmd_msg.c

1. Referenced also as MAC_MLME_LIST_GETxxx.

Doc ID 018752 Rev 1

UM1076

Global data structure (in cmd_msg.h)

4

Global data structure (in cmd_msg.h)

The global data structure is used to inform the user about the result of the last used
command:

#define PHYDefine_PHY_HDR_DATA_SIZE 7
#define MAX_MESSAGE_LENGTH 1024
#define MAX_SN_LENGTH 1024

struct ST7590_Status_type{
unsigned char Last_Snd_CMD_ID;
unsigned char Last_Rcv_CMD_ID;
unsigned char LastErrCode;
unsigned short LastStateField;
unsigned char LastResultCode;
unsigned char LastType;
unsigned short LastCfB;
unsigned char LastReleaseConnectionReason;
unsigned char LastConnectionHandler[4];
unsigned char LastSNA[6];
unsigned char LastEUI48[6];
unsigned char LastReceivedMessage[MAX_MESSAGE_LENGTH];
unsigned short LastReceivedMessagelLength;
unsigned short TX_Buffer_Len_Used;
unsigned short RX_Buffer_Len_Used;

unsigned short LastSNLength;

unsigned char LastSN[MAX_SN_LENGTH];
unsigned short LastDA; /Destination Address
unsigned short LastSA; /Source Address
unsigned char LastDSAP;

unsigned char LastSSAP;

I DL

unsigned char LastTXStatus; /TXS

unsigned char LastLC; //Link Class

unsigned char LastStatus; //Link Class

Doc ID 018752 Rev 1

7/26

Global data structure (in cmd_msg.h) UM1076

8/26

unsigned char LastLR; //Length requested
/ PIB
unsigned short PIBAttr;

unsigned short PIBListAttr;
I/ PHY-

unsigned char Level;

unsigned char Scheme;
unsigned long Timer;
unsigned char SNR;

unsigned char RQ; // Copy the data in the Data Indication message: 10 are the LEN...RQ
fields size

unsigned char PHY_Header[PHYDefine_PHY_HDR_DATA_SIZE];
/
char GetStateOk;

%

extern struct ST7590_Status_type ST7590_Status;

Table 2. Example of the field description and its link to the commands
Field Note
Last_Snd_CMD_ID Send command ID filled by all CmdMsgSnd_xxx
Last_Rcv_CMD_ID Received command ID filled by all CmdMsgRcv_xxx
LastErrCode Always filled by all CmdMsgRcv_xxx
LastStateField Always filled by all CmdMsgRcv_xxx
LastResultCode Filled by some CmdMsgRcv_xxx commands
LastType Filled by CmdMsgRcv_MACEstConf
LastCfB Filled by CmdMsgRcv_MACEstind
LastReleaseConnectionReason Filled by CmdMsgRcv_MACRelind
LastConnectionHandler Filled by some CmdMsgRcv_xxx commands
LastSNA Filled by CmdMsgRcv_MACRegisterIndication
LastEUI48 Filled by some CmdMsgRcv_xxx commands
LastReceivedMessage Filled by some CmdMsgRcv_xxx commands
LastReceivedMessagelLength Filled by some CmdMsgRcv_xxx commands
TX_Buffer_Len_Used Filled by some CmdMsgRcv_xxx commands
RX_Buffer_Len_Used Filled by some CmdMsgRcv_xxx commands(")

1. See the ST7590 datasheet and product related documents for the meaning and usage of the remaining
fields that are not mentioned in Table 2.

Doc ID 018752 Rev 1 KYI

UM1076

Commands

5

5.1

Commands

The user calls only send commands: CmdMsgSnd_xxx. The corresponding receiving
command CmdMsgRcv_xxx is called automatically according to the CMD_ID that is
answered by modem ST7590.

Communication with PLM ST7590 is done by the procedure shown in Table 3.

Table 3. Steps used to communicate with the modem

Step User System, library

1 Calls: CmdMsgSnd_xxx Sends xxx command

Wait for the first character coming from ST7590
Wait 50 ms

Receive complete incoming message

Sets ST7590_Status data structure

2 Checks: ST7590_Status

In Section 5.1to Section 5.5 the first five files are described in detail. These five files make it
possible to build the simplest application:

® cmd_msg.c: checking if the modem is operational

® MAC_MLME.c: checking if the modem is registered in the network

® MAC_Establish.c: logical channel establishment

® MAC_Data.c: data transfer from “Base node” to “Service node” or vice versa

® MAC_Leave.c: logical channel break-down management

The rest of the information about the function and commands in the library can be found in

related files: the ST7590 datasheet and product related documents and directly in the
header files of corresponding commands.

cmd_msg.h

The function of the command and appropriate usage is described in detail in the ST7590
datasheet and product related documents.

Table 4. Available commands in cmd_msg.c file
Commands Command code Filename
PRIME_GetState <0xBO>
PRIMEConfig <0xB3> cmd_msg.c
SW_Reset <0x90>

Send commands:
void CmdMsgSnd_PrimeGetState(void);
void CmdMsgSnd_PrimeConfig(unsigned char Configuration);

Doc ID 018752 Rev 1 9/26

Commands

UM1076

5.2

5.3

10/26

void CmdMsgSnd_SWReset(void);

Receive commands (not called by user):
void CmdMsgRcv_PrimeGetState(unsigned char Buffer());
void CmdMsgRcv_PrimeConfig(unsigned char Buffer());

MAC_MLME.h
Table 5. Available commands in MAC_MLME.c file

Commands Command code Filename
MAC_MLME_REGISTERSTATE_ Indication <0xB9> MAC_MLME.c

Send commands:
void CmdMsgSnd_MACRegisterStatelndication(void);

Receive commands:

void CmdMsgRcv_MACRegisterindication(unsigned char Buffer(]);

MAC_Data.h
Table 6. Available commands in MAC_Data.c file

Commands Command code Filename
MAC_Data_Request <0xCC>
MAC_Data_Confirm <0xCD> MAC_Data.c
MAC_Data_Indication <OxCE>

Send commands:

void CmdMsgSnd_MACDataReq(unsigned char ConnectionHandler[4], char
DataToSend[], short DataToSendLength);

void CmdMsgSnd_MACDataConf(void);
void CmdMsgSnd_MACDatalnd(void);

Receive commands:

void CmdMsgRcv_MACDataReq(unsigned char Buffer[]);
void CmdMsgRcv_MACDataConf(unsigned char Buffer[]);
void CmdMsgRcv_MACDatalnd(unsigned char Buffer(]);

Doc ID 018752 Rev 1 KYI

UM1076 Commands
5.4 MAC_Establish.h
Table 7. Available commands in MAC_Establish.c file
Commands Command code Filename
MAC_Establish_Request <0xCO0>
MAC_Establish_Indication <0xC1> MAC_Data.c
MAC_Establish_Response <0xC2>
MAC_Establish_Confirm <0xC3>
Send commands:
void CmdMsgSnd_MACEstReq(unsigned char EUI48[6], char Type, char ARQ, unsigned
short CfB, char AdditionalDataToSend[], short AdditionalDataToSendLength);
void CmdMsgSnd_MACEstInd(void);
void CmdMsgSnd_MACEstRes(unsigned char ConnectionHandler[4], char Answer, char
AdditionalDataToSend[], short AdditionalDataToSendLength);
void CmdMsgSnd_MACEstConf(void);
Receive commands:
void CmdMsgRcv_MACEstReq(unsigned char Buffer[]);
void CmdMsgRcv_MACEstind(unsigned char Buffer(]);
void CmdMsgRcv_MACEstRes(unsigned char Buffer(]);
void CmdMsgRcv_MACEstConf(unsigned char Buffer[]);
5.5 MAC_Release.h

Table 8. Available commands in MAC_Release.c file
Commands Command code Filename
MAC_Relase_Request <0xC4>
MAC_Relase_Indication <0xC5>
MAC_Release.c
MAC_Relase_Response <0xC6>
MAC_Relase_Confirm <0xC7>

Send commands:

void CmdMsgSnd_MACRelReq(unsigned char ConnectionHandler[4]);

void CmdMsgSnd_MACRelind(void);

void CmdMsgSnd_MACRelRes(unsigned char ConnectionHandler[4], char Answer);
void CmdMsgSnd_MACRelConf(void);

Doc ID 018752 Rev 1 11/26

Commands

UM1076

12/26

Receive commands:

void CmdMsgRcv_MACRelReqg(unsigned char Buffer(]);
void CmdMsgRcv_MACRelInd(unsigned char Buffer[]);
void CmdMsgRcv_MACRelRes(unsigned char Buffer[]);
void CmdMsgRcv_MACRelConf(unsigned char Buffer());

Doc ID 018752 Rev 1

UM1076

Library support files

6

6.1

Library support files

time_counter.h

This file contain the prototype of the functions which implement the timers being used for
precise timing when communicating with the modem or can be used for timing events in the

user’s own application. The user can use up to six timers numbered from 0 to 5:
typedef enum({

TimerCounter0 = 0,

TimerCounter1 = 1,

TimerCounter2 = 2,

TimerCounter3 = 3,

TimerCounter4 = 4,

TimerCounter5 = 5,

} TimerNumberEnum;

//Results

#define TimerElapsed 1

#define TimerNotElapsed 0
#define TimerDisabled 2000000000

//Time in milliseconds

#define SHORTTIME 50
#define ANSWERTIME7590 50
#define TIMERSMAXCOUNT 6

void TIMER_timeToElapse(TimerNumberEnum TimerNo, int ms);

® set the timer TimerNo to ms milliseconds, enables it and starts countdown.
int TIMER_timeElapsed(TimerNumberEnum TimerNo);

o if the timer TimerNo reaches zero, this function returns TimerElapsed value
o if the timer is disabled, this function returns TimerElapsed value

o if the timer has not yet reached zero, this function returns TimerNotElapsed
void TIMER_DisableTimer(TimerNumberEnum TimerNo);

® disables the timer TimerNo

void TIMER_waitFor(TimerNumberEnum TimerNo, int ms);

o finishes after ms milliseconds using the timer TimerNo.

Doc ID 018752 Rev 1

13/26

Library support files UM1076

6.2

6.3

14/26

void TIMER_HW _Init(void);
® configures the timer or SysTick hw used for timing.

history.h

This file contains the prototype of the functions which implement a simple circular data
logging system. It logs 4 values: ErrorCode, StatusCode, CommandCodeSnd and
CommandCodeRcv whenever the putin function is called. An array of the logged bytes,
ErrorEvidence, can be investigated in the programming environment during debugging.
Array capacity is 4 x 255 bytes.

#define maxerrors 255

unsigned char pointer;

struct{
unsigned char Error;
unsigned short Status;
unsigned char CommandSnd;
unsigned char CommandRcv;

} ErrorEvidence[maxerrors];

void initErrorList(void);
® inits the data logger.

void putin(unsigned char ErrorCode, unsigned short StatusCode, unsigned char
CommandCodeSnd, unsigned char CommandCodeRcv);

® inserts the new values into the ErrorEvidence array.

serial_port.h

This file contains functions that take care of incoming packets that were received by the
power line modem. According to the received packet, the main function calls corresponding
CMD_rcv_xxx functions from other files from Section 5.

Function exported from file: serial_port.h

Called by user:

void SerialportDataRcv(void);

This function is called automatically after some period of time after calling any
CmdMsgSnd_xxx command by user. In order not to miss any incoming message, the user
should check the status of the CTS or DFU_FORCE line of ST7590 (see the ST7590
datasheet and product related documents) or call e.g. PRIME_GetState regularly and
according to the received State Field react with the corresponding action.

Doc ID 018752 Rev 1 KYI

UM1076

Library support files

6.4

stm32_uart.h

This file implements a buffered UART interface.

The beginning of the file is dedicated for physical definition of the pins of the microcontroller
used for UART interface:

#define TXD_RXD_remap 1 // 1: Remap (TX/PB6, RX/PB7)
#define TXD_pin GPIO_Pin_6 //used UART

#define TXD_port GPIOB //used UART

#define RXD_pin GPIO_Pin_7 //used UART

#define RXD_port GPIOB //used UART

#define TREQ_pin GPIO_Pin_9 //T_REQ

#define TREQ_port GPIOB //T_REQ

#define US1 0

#define PLM US1
® This directive defines that PLM constant is UARTO of the microcontroller.

#define DirectWrite

This directive defines which function is used to write to UART:

® ComWrt= ComWrt_direct (if DirectWrite defined) all the data requested to be sent over
UART is sent in one row and the application does not continue unless the transfer has
finished.

® ComWrt= ComWrt_buff data is stored in buffer and sent by interrupt whenever there is
computational time.

Functions for buffered UART (parameter portNumber is present for legacy reason only, has
no influence on functionality):

void UART1_init(void);

void UART2_init(void);

® configures UART interfaces of the used microcontroller.

int GetInQLen (int portNumber, char UART);

® gives the length of the data present in the input buffer for the chosen UART.
int FlushOutQ (int portNumber, char UART);

® clears the output buffer for the chosen UART.

int FlushinQ (int portNumber, char UART);
® clears the input buffer for the chosen UART.

Doc ID 018752 Rev 1 15/26

Library support files UM1076

16/26

int ComWrtByte (int portNumber, char byte, char UART);

® writes one byte to the chosen buffered UART.

int ComWrt_buff (int portNumber, char buffer[], size_t count, char UART);
® writes array buffer of size_t length to chosen buffered UART.

void ComWrt_direct(int portNumber, unsigned char* data_buffer, unsigned short
Nb_bytes, char USART);

® writes array buffer of size_t length to chosen buffered UART.

int ComRd (int portNumber, char buffer[], int count, char UART);

® reads data from chosen buffered UART to array buffer. Count indicates number of bytes
read.

char ComRdByte (int portNumber, char UART);
® reads one byte from chosen buffered UART.

Doc ID 018752 Rev 1 KYI

UM1076

Communication example

7

71

Communication example

This communication example demonstrates two nodes in PRIME network: base node and
service node. The service node sends a packet with data 0x11 or 0x22 every two seconds.
Whenever the base node receives 0x11, it switches on an LED. If it receives 0x22, it
switches it off.

This example application uses:
® ST7590 library described in the chapters above
® Two files: main.c and functions.c.

Application - flowchart

Communication example application is described in detail by the flowchart in Figure 1.

Figure 1. Communication example: application flowchart

Base node Service node

. Registration I Registration
flag set? flag set?
«—

Communication done by PHY

Communication done by USER
. Request for

channel?

«— Establish channel

Confirm channel — I Channel
confirmed?
Check for incoming data Send a data

if any toggle the LED Confirm the data

AMO07512

Doc ID 018752 Rev 1 17/26

Communication example UM1076

7.2

18/26

Communication - sequence charts

The registration process that is done automatically according to the “PRIME specification”
(see www.prime-alliance.org) is shown in Figure 2.

Figure 2. Device registration sequence chart

BASE SWITCH - j NODE
P
] HDR.DO =0
REG_REQ — PKT.LNID = Ox3FFF
| PKT.SID = |
] REG.N =0
-+ Peoas
DO =
PRTINID = K _ REG_Rgp
PKT.SID = |
REG.N =0 L,
P
“ HDR.DO =0
cK - PKT.LNID =K
% REG.SID =
p REGN =0

AMO07511

Doc ID 018752 Rev 1 KYI

Communication example

UM1076
Usage of the “PRIME primitives” during establishment of the channel is described in detail in
Figure 3.
Figure 3. Logical connection establishment sequence chart
BASE SWITCH NODE
| conrERS -
HDR.DO =0
S | Y] CON.N=0
/CON}/ CON.LCID =K
i
T—NAEQp
HDR.DO = 1 L, o
CON.N=0
CON.LCID = K — N_REQ g
\>
BASE SWITCH NODE
- NRtag |
HDR.DO = 1 L,
CON.N=0 Co
CON'LCID =K \%
\>
w’
HDR.DO =0
S “7 CON.N = 1
W’ CON.LCID =K
‘/
AMO07510
7.3 main.c

This file contains only the state machine that calls the corresponding function of each state
from function.c file:

ActualStateEnum ActualState = MODEM_CHECK;
while(1){
switch(ActualState){

case MODEM_CHECK: ActualState = modem_state_check(); break;

case CLIENT_MASTER_DATA_SEND_req: ActualState =
client_master_data_send_req(); break;

Doc ID 018752 Rev 1 19/26

Communication example UM1076

case CLIENT_MASTER_DATA_CONFIRM_ind: ActualState =
client_master_data_confirm_ind(); break;

case CLIENT_MASTER_DATA_RECEIVE_ind: ActualState =
client_master_data_receive_ind(); break;

case SERVER_SLAVE_DATA_SEND_req: ActualState =
server_slave_data_send_req(); break;

case SERVER_SLAVE_DATA_RECEIVE_ind: ActualState =
server_slave_data_receive_ind(); break;

case IDLE_STATE:; break;

ActualState = check_external_events(ActualState); //check for incoming packet

}

7.4 functions.c

This file contains the corresponding functions for each state of the state machine
implemented in main.c:

ActualStateEnum modem_state_check(void){

while(GetFPMAstatus(NO_EFFECT_HARD_WIRED_UART1_REMAPED, 0, NULL, 0,
NULL)!= 0){

}
InitDevice();
if(Demonstration_data.nodeldentification == DEVICE_CLIENT_MASTER_NODE)
return CLIENT_MASTER_DATA_SEND_req;
or else
return SERVER_SLAVE_DATA_SEND_req;

I DEVICE_CLIENT_MASTER_NODE

ActualStateEnum client_master_data_send_req(void){
ST7570_Status__Data.Last_ CONFIRM_CODE = LP_NOT_VALID;
CMD_snd_PHY_DataRequest(&(Demonstration_data.dataToSend), 1);
TIMER_timeToElapse(TimerCounter3, 700); /Confirm response interval is 290 - 560 ms
return CLIENT_MASTER_DATA_CONFIRM_ind;

20/26 Doc ID 018752 Rev 1 KYI

UM1076 Communication example

ActualStateEnum client_master_data_receive_ind(void){
return IDLE_STATE;

ActualStateEnum client_master_data_confirm_ind(void){
if(TIMER_timeElapsed(TimerCounter3))
return IDLE_STATE;
switch(ST7570_Status__Data.Last_ CONFIRM_CODE){
case LP_NOT_VALID:
return CLIENT_MASTER_DATA_CONFIRM_ind;
case LP_OK:
if(Demonstration_data.dataToSend == 0x11)
GPIO_ResetBits(ORANGE_LED1_Port, ORANGE_LED1_Pin);
or else
GPIO_ResetBits(RED_LED_Port, RED_LED_Pin);
TIMER_timeToElapse(TimerCounter2, 300);
default:

return IDLE_STATE;
}

I DEVICE_SERVICE_SLAVE_NODE

ActualStateEnum server_slave_data_send_req(void){
return IDLE_STATE;

ActualStateEnum server_slave_data_receive_ind(void){
if(ST7570_Status__Data.Last_P_SDU[0] == 0x11)
GPIO_ResetBits(ORANGE_LED1_Port, ORANGE_LED1_Pin);
or else
GPIO_ResetBits(RED_LED_Port, RED_LED_Pin);
return IDLE_STATE;

IYI Doc ID 018752 Rev 1 21/26

Communication example UM1076

/=== END - Exchange data

ActualStateEnum check_external_events(ActualStateEnum InState){
int incomming_packet. COMMAND_ID;

ActualStateEnum returnValue = InState;

if(Demonstration_data.nodeldentification == DEVICE_CLIENT_MASTER_NODE)
if(TIMER_timeElapsed(TimerCounter1))

{

TIMER_timeToElapse(TimerCounter1, 2000); //timer to send message every 2 s
returnValue = CLIENT_MASTER_DATA_SEND_req;

}
incomming_packet_ COMMAND_ID = check_incomming_packets();

if(incomming_packet COMMAND_ID == CMD_DATA_INDICATION_CODE){
TIMER_timeToElapse(TimerCounter2, 300); /ftimer to switch on the LED
returnValue = SERVER_SLAVE_DATA_RECEIVE_ind;

}

if(incomming_packet COMMAND_ID == CMD_SYNCHRO_INDICATION_CODE)
TIMER_timeToElapse(TimerCounter4, 5000);

if(TIMER_timeElapsed(TimerCounter4)){//automatic desynchro request every 5 s
CMD_snd_DesynchroRequest();
TIMER_DisableTimer(TimerCounter4);

if(TIMER_timeElapsed(TimerCounter2)){ //timer to switch off the LEDs
GPIO_SetBits(ORANGE_LED1_Port, ORANGE_LED1_Pin);
GPIO_SetBits(RED_LED_Port, RED_LED_Pin);
TIMER_DisableTimer(TimerCounter2);

22/26 Doc ID 018752 Rev 1 KYI

UM1076

Communication example

return returnValue;

int check_incomming_packets(void){
if(RX_buffer_internal_not_empty){
return CheckFPMAevents(0);
}

return O;

IYI Doc ID 018752 Rev 1

23/26

Real application UM1076

8

24/26

Real application

Figure 5 shows an application NODE consisting of the EVALST7590-1 power line
demonstration board and STEVAL-PCC012V1 connectivity gateway demonstration board.
This setup represents a complete node (base node or service node). More details about
interconnection of different platforms to power line demonstration boards can be found in the
UM1038 user manual.

Figure4. EVALST7590 and STEVAL-PCC012V1, block diagram

UART

ST7590 > Ext. uC

Host
interface

AMO07509

Figure 5. EVALST7590 and STEVAL-PCC012V1, real application

J

Doc ID 018752 Rev 1

UM1076

Revision history

9

Revision history

Table 9. Document revision history
Date Revision Changes
15-Nov-2011 1 Initial release.

Doc ID 018752 Rev 1

25/26

UM1076

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

26/26 Doc ID 018752 Rev 1 KYI

	1 Introduction
	2 Library details
	3 Modem commands
	Table 1. Assignment of command names to the library files

	4 Global data structure (in cmd_msg.h)
	Table 2. Example of the field description and its link to the commands

	5 Commands
	Table 3. Steps used to communicate with the modem
	5.1 cmd_msg.h
	Table 4. Available commands in cmd_msg.c file

	5.2 MAC_MLME.h
	Table 5. Available commands in MAC_MLME.c file

	5.3 MAC_Data.h
	Table 6. Available commands in MAC_Data.c file

	5.4 MAC_Establish.h
	Table 7. Available commands in MAC_Establish.c file

	5.5 MAC_Release.h
	Table 8. Available commands in MAC_Release.c file

	6 Library support files
	6.1 time_counter.h
	6.2 history.h
	6.3 serial_port.h
	6.4 stm32_uart.h

	7 Communication example
	7.1 Application - flowchart
	Figure 1. Communication example: application flowchart

	7.2 Communication - sequence charts
	Figure 2. Device registration sequence chart
	Figure 3. Logical connection establishment sequence chart

	7.3 main.c
	7.4 functions.c

	8 Real application
	Figure 4. EVALST7590 and STEVAL-PCC012V1, block diagram
	Figure 5. EVALST7590 and STEVAL-PCC012V1, real application

	9 Revision history
	Table 9. Document revision history

