
STM32L4 technical training

Digital Filter for Sigma Delta Modulator (DFSDM)

Hands-on session

DFSDM Lab
connection of single microphone and collect PCM data

MEMS microphone connection to DFSDM
• Objective

• Learn how to connect MEMS microphone to

DFSDM in STM32CubeMX

• Learn how to configure DFSDM to convert

PDM to PCM signal

• How to Generate Code in STM32CubeMX

and use HAL functions

• Goal

• Configure DFSDM peripheral in order to

collect PDM data and convert them into PCM

format.

MP34DT01 microphone connection
STM32L476RG-Discovery

• STM32F476RG-Discovery is equipped with one MP34DT01 microphone

connected to pins:

• PE7 (DFSDM channel2)

• PE9 (DFSDM clock out)

• It requires an external clock in range 1MHz to 3.25MHz delivered by DFSDM

for proper operation.

Selection of the system parameters

• The digital audio output from the microphone is coded in PDM (Pulse

Density Modulation) and is connected to PE7. When CLK = 0 (PE9) ,

the audio PDM signal is sent on PE7.

• Let’s select the following parameters of our system:

• DFSDM clock: 80MHz (system clock)

• Microphone input clock: 2MHz

• Output sampling frequency: 8kHz

• Resolution of the output signal: 24bits (signed)

STM32CubeMX
Selecting DFSDM

• Create project in STM32CubeMX

• Menu > File > New Project

• Select STM32L4 -> STM32L4x6 -> LQFP100 package -> STM32L476VGTx

• Select DFSDM1:

• Select “PDM/SPI Input from ch2 and internal clock” option for Channel2

• Select CKOUT to enable clock connection from MCU to microphone

• Change default DFSDM1_CKOUT pin (PC2) to alternative PE9

STM32CubeMX
clock configuration

• Go to Clock Configuration tab and configure system clock (HCLK) and

DFSDM to 80MHz using HSI 16MHz oscillator and PLL

STM32CubeMX
Configure DFSDM

• Go to Configuration tab and select DFSDM peripheral

STM32CubeMX
configuration of the DFSDM input channel

• Select Channel2 tab (as the

microphone is connected to

this input channel)

• Set SPI with rising edge in Type

field

• Select Internal SPI clock

• Do not configure offset and bit shift,

neither analog watchdog

• Press Apply to confirm the

configuration

STM32CubeMX
configuration of the DFSDM output clock

• Select Output Clock tab

• Select: Source for output clock is

system clock (80MHz)

• To have 2MHz clock signal for the

microphone we need to set a divider

to 40 (as 80MHz/2MHz=40)

• Press Apply to confirm the

configuration

STM32CubeMX
configuration of the DFSDM filter – part 1/2

• Select Filter0 (can be different one)

• Select Channel 2 in regular channel

selection field

• Set continuous mode

• Select software trigger

• Configure Filter parameters

• Sinc order set to Sinc 3 filter type

• Oversampling (Fosr) set to 250 (to have

output sampling rate 8kHz from input 2MHz)

• Iosr set to 1 (we will not use it)

• Press Apply to confirm settings

STM32CubeMX
configuration of the DMA for DFSDM

• Select DMA Settings tab

• Click Add button

• Select DFSDM1_FLT0 from DMA

request

• Set incrementation on Memory side

• Select Word Data Width for both sides

• Select Circular mode

• Press Apply to confirm

configuration

STM32CubeMX
configuration of the DFSDM filter – part 2/2

• Once DMA channel is

configured we can come back

to Filter0 settings and

perform two more steps:

• Select Fast Mode: Enable

• Select Dma Mode: Enable

• Press OK to confirm the

changes

• DFSM peripheral is now fully

configured

STM32CubeMX
Project generation

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

• After successful code generation by STM32CubeMX this is the right

time to import it into SW4STM32 toolchain for further processing

Modifying the code
data declaration and DFSDM start - main.c file

Tasks:
1. Declare the size of the buffer: 1024 words

2. Declare data buffer for DFSDM to store PCM data (32bit signed values)

3. Start DFSDM peripheral in DMA mode for regular conversion for configured channel and its assigned

filter to store AUDIO_BUF number of PCM samples into RecBuff buffer

/* USER CODE BEGIN PV */

/* Private variables ---*/

#define AUDIO_BUF 1024

int32_t RecBuff[AUDIO_BUF];

/* USER CODE END PV */

/* USER CODE BEGIN 2 */

HAL_DFSDM_FilterRegularStart_DMA(&hdfsdm1_filter0, (int32_t *)RecBuff, AUDIO_BUF);

/* USER CODE END 2 */

• Now we can compile the code and run the debug session

• As a result we should monitor RecBuff[] table content.

• We can copy the content of this table to a selected PC application for

further analysis

Example of the final result

• An example of measurement of input acoustic signal which was a sine

wave f=600Hz

0

20000

40000

60000

80000

100000

120000

140000

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0
0

1
0
3

1
0
6

1
0
9

1
1
2

RecBuff

• DMA is taking data from DFSDM_FLTxRDATAR register (there is

separate register for each filter)

• The 24bits PCM data are located on bits 8-32.

• We should shift right the buffer data by 8 bits to get valid acoustic

samples

• To do it in the proper timing we need to synchronize with DMA status

flags (half transfer complete and transfer complete)

DFSDM Lab extension
further processing of the PCM data (DMA transfers management)

• We will continue with our previous lab on DFSDM

• Now we will configure and use interrupt callbacks raised by DMA

transferring data from DFSDM

• The goal of this part is to perform some additional postprocessing of the

PCM data to have valuable acoustic samples.

Modifying the code
postprocessing of the PCM data - main.c file 1/2

Tasks:
1. Declare buffer for post processed PCM data (same size like RecBuff[])

2. Implement callback functions for DMA Half transfer and DMA transfer complete interrupts

/* USER CODE BEGIN PV */

/* Private variables ---*/

int i=0;

int32_t PlayBuff[AUDIO_BUF];

uint32_t DmaRecHalfBuffCplt = 0;

uint32_t DmaRecBuffCplt = 0;

/* USER CODE BEGIN 4 */

void HAL_DFSDM_FilterRegConvHalfCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)

{

DmaRecHalfBuffCplt = 1;

}

void HAL_DFSDM_FilterRegConvCpltCallback(DFSDM_Filter_HandleTypeDef *hdfsdm_filter)

{

DmaRecBuffCplt = 1;

}

/* USER CODE END 4 */

Modifying the code
postprocessing of the PCM data - main.c file 2/2

Tasks:
3. Perform postprocessing of the PCM data on completed part of the buffer

/* USER CODE BEGIN 3 */

if(DmaRecHalfBuffCplt == 1) //processing of the first half of the buffer

{

/* Store values on Play buff */

for(i = 0; i < AUDIO_BUF/2; i++)

PlayBuff[i] = RecBuff[i] >> 8; //example of PCM data postprocessing

DmaRecHalfBuffCplt = 0;

}

if(DmaRecBuffCplt == 1) //processing of the second half of the buffer

{

/* Store values on Play buff */

for(i = AUDIO_BUF/2; i < AUDIO_BUF; i++)

PlayBuff[i] = RecBuff[i] >> 8; //example of PCM data postprocessing

DmaRecBuffCplt = 0;

}

Example of the final result

• An example of measurement of input acoustic signal which was a sine

wave f=600Hz

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000 PlayBuff

Further reading

• AN4427 – Gasket design for optimal acoustic performance in MEMS microphones

• AN4426 – Tutorial for MEMS microphones

• MP34DT01-M datasheet

• www.st.com/mems

http://www.st.com/mems

Enjoy!

www.st.com/mcu

/STM32 @ST_World st.com/e2e

http://www.st.com/stm32l4

