
31/07/2018 174283[PostContent].html

file:///C:/Work/STM/data/1-Faical/174283[PostContent].html 1/3

I was working on a project recently and it was the first one which was involved enough to make the sensor
networking complicated. In the end, I think the communication was the bottleneck in terms of overall
performance and I'm wondering how more experienced people would have solved this problem. This is a
long read, but I think it's pretty interesting so please stick with it. The problem was to design an autonomous
blimp capable of navigating an obstacle course and dropping ping pong balls into brown box targets. Here
goes:

Sensors

4D Systems uCAM-TTL camera module - UART interface
HMC6352 Digital Compass - I2C interface
Maxbotix Sonar ez4 - 1 pin analog interface

Actuators

2x L293D motor drivers (connected to simple hobby motors) - These were used to drive 6 motors
bidirectionally. They required PWM inputs in order to vary the speed. Now 3 of our motors were
always doing the same thing (the ones that controlled up/down movement) so they only required 2
PWM outputs from our controllers to control all 3 motors. The other 3 motors which controlled
lateral movement all needed individual control (for omni-directional movement) so that was
another 6 PWM outputs required from our controllers.
Servo motor - PWM interface

Controllers

For reasons that will become clear later, we ended up using 2x ATMEGA328Ps. We used an Arduino Uno to
program them (we didn't have access to an ISP) but we fab'd a custom PCB so we didn't have to use arduino
boards since that would just add unnecessary weight to our blimp. As for why we chose the ATMEGA328P, I
was very familiar with the arduino environment and I think that made the code development much quicker
and easier.

Communication & Processing

2x Xbee Basic
2x ATMEGA328P: http://www.kynix.com/Detail/551814/ATMEGA328P.html

Desktop computer running C++ w/ openCV

So as you can tell from the camera module, most of our project relied on computer vision. The blimps could
only carry so much weight and we didn't feel comfortable implementing computer vision on a
microcontroller. So what we ended up doing was using XBee's to relay the image data back to a desktop
computer. So on the server side we received image data and used openCV to process the image and figure
stuff out from it. Now the server side also needed to know height information (from the sonar) and compass
information.

http://www.kynix.com/Detail/551814/ATMEGA328P.html


31/07/2018 174283[PostContent].html

file:///C:/Work/STM/data/1-Faical/174283[PostContent].html 2/3

The first wrinkle was we were not able to have the camera controlled by a microcontroller for a couple
reasons. The main issue was internal memory on the uP couldn't handle storing an entire frame. There might
have been ways around this through clever coding but for the purposes of this question let's pretend it was
impossible. So to solve this problem, we had the server side send camera commands through the XBee
transceiver and the XBee receiver (on board the blimp) had its output wired to the camera's input.

The next wrinkle was that there are not enough PWM's on a single ATmega328P to control all the motors
BECAUSE the I2C interface uses one of the PWM pins (damn them...). That is why we decided to use a 2nd
one. The code actually lent itself perfectly to parallel processing anyway because the height control was
completely independent of the lateral movement control (so 2 micros was probably better than one attached
to a PWM controller). Therefore, U1 was responsible for 2 PWM outputs (up/down) and reading the Sonar.
U2 was responsible for reading the compass, controlling 6 PWM outputs (the lateral motors), and also
reading the Sonar. U2 also was responsible for receiving commands from the server through the XBee.

That led to our first communication problem. The XBee DOUT line was connected to both the
microcontroller and the camera. Now of course we designed a protocol so that our micro commands would
ignore camera commands and camera commands would ignore micro commands so that was fine. However,
the camera, when ignoring our micro commands, would send back NAK data on its output line. Since the
command was meant for the micro we needed someway to turn off the camera output to the XBee. To solve
this, we made the micro control 2 FETs which were between the camera and XBee (thats the first FET) and
also between U2 and the XBee (thats the second FET). Therefore, when the camera was trying to send info
back to the server the first FET was 'on' and the second FET was 'off'. Unfortunately there appeared to be
some cross talk with this method and sometimes when the server was trying to receive height data for
example, it would read a NAK from the XBee.

So to give you an idea of how this worked here are a few examples:

1. Server requests a picture - PIC_REQUEST goes through XBee and arrives at U2 and camera. U2
ignores it and camera sends back image data.

2. Server just finished processing a picture and is sending motor data to tell blimp to turn right -
MOTOR_ANGLE(70) gies through XBee and arrives at U2 and camera. U2 recognizes as a
micro command and thus turns off Camera's FET (but perhaps the camera already responded with
a NAK?? who knows...). U2 then responds to the command by changing motor PWM outputs. It
then turns Camera's FET back on (this was the default setting since image data was most
important).

3. Server realizes we've come to a point in the obstacle course where our default hover height now
needs to be 90 inches instead of 50 inches. SET_HEIGHT goes through XBee and same thing
happens as in example 2. U2 recognizes the SET_HEIGHT command and triggers an interrupt on
U1. U1 now comes out of it's height control loop and waits to receive serial data from U2. That's
right, more serial data. At this point the U2's FET is on (and camera's FET is off) so the server
receives the height that U2 is also sending to U1. That was for verification purposes. Now U1
resets its internal variable for height2HoverAt. U2 now turns off it's FET and turns the camera
FET back on.

I definitely left out a good amount of information but I think that's enough to understand some of the
complications. In the end, our problems were just synchronizing everything. Sometimes there would be data
left over in buffers, but only3 bytes (all our commands were 6 byte sequences). Sometimes we would lose
connection with our camera and have to resync it.

So my question is: What techniques would you guys suggest to have made the communication between all
those component more reliable/robust/simpler/better?

For example, I know one would've been to add a delay circuit between the on board XBee out and the
camera so that the micro had a chance to turn off the camera's talk line before it responded to micro
commands with NAKs. Any other ideas like that?

Thanks and I'm sure this will require many edits so stay tuned.



31/07/2018 174283[PostContent].html

file:///C:/Work/STM/data/1-Faical/174283[PostContent].html 3/3

Edit1: Splicing the camera's UART data through one of the micros did not seem possible to us. There were
two options for camera data, raw bit map, or JPEG. For a raw bitmap, the camera just sends data at you as
fast as it can. The ATmega328P only has 128 bytes for a serial buffer (technically this is configurable but I'm
not sure how) and we didn't think we'd be able to get it out of the buffer and through to the XBee fast
enough. That left the JPEG method where it sends each package and waits for the controller to ACK it (little
handshaking protocl). The fastest this could go at was 115200 baud. Now for some reason, the fastest we
could reliably transmit large amounts of data over the XBee was 57600 baud (this is even after we did the
node/network pairing to allow the auto-resend capability). Adding the extra stop in our network (camera to
micro to XBee as opposed to just camera to XBee) for the micro simply slowed down the time it took to
transfer an image too much. We needed a certain refresh rate on images in order for our motor control
algorithm to work.


