

DT0106
Design tip

Residual linear acceleration by gravity subtraction
to enable dead-reckoning

 By Andrea Vitali

Purpose and benefits
This design tip explains how to compute the residual linear acceleration, both in terms of
sensor body frame or in terms of world reference frame. The latter reference frame is
needed to perform dead-reckoning based on double integration of the residual linear
acceleration.

Benefits:

• Added functionality with respect to data fusion provided by MotionFX library.

• Short implementation which enables easy customization and enhancement by the end-
user. Easy to use on every microcontroller.

Scope
This design tip applies to all accelerometers, eCompass modules, and iNemo inertial IMUs
from STMicroelectronics.

Residual linear acceleration in terms of the sensor body frame
The gravity vector is rotated based on the estimated orientation of the sensor, then it is
subtracted from the acceleration vector. Looking at Figure 1, the gravity vector is [0;0;1]
(column vector). The code is then the following:

linacc_body = -(acc – rotM*[0;0;1]) % gravity vector is rotated and subtracted

The negative sign is due to the fact that the output of the accelerometer axis is positive
when pointing down towards the gravity vector. As an example, the Z-axis is pointing down
and a positive acceleration can be obtained by an upward motion along –Z.

August 2018 DT0106 Rev 1 1/6

 www.st.com

Figure 1. Reference orientation for input data from accelerometer and magnetometer,
and reference orientation for output data: roll, pitch and yaw angles

The rotation matrix can be computed from the current orientation, expressed as quaternion
or Euler angles, using one of the following functions:

function M = quat2rotM(Q)
 qw=Q(1); qx=Q(2); qy=Q(3); qz=Q(4);
 qw2=qw*qw; qx2=qx*qx; qy2=qy*qy; qz2=qz*qz;
 n=1/(qw2+qx2+qy2+qz2);
 m11=(qx2 -qy2 -qz2 +qw2)*n;
 m22=(-qx2 +qy2 -qz2 +qw2)*n;
 m33=(-qx2 -qy2 +qz2 +qw2)*n;
 t1=qx*qy; t2=qz*qw; m12=2*(t1+t2)*n; m21=2*(t1-t2)*n;
 t1=qx*qz; t2=qy*qw; m13=2*(t1-t2)*n; m31=2*(t1+t2)*n;
 t1=qy*qz; t2=qx*qw; m23=2*(t1+t2)*n; m32=2*(t1-t2)*n;
 M=[m11 m12 m13; m21 m22 m23;m31 m32 m33];
end

function M = euler2rotM(phi,theta,psi)
 % North-East-Down reference frame
 % Roll(phi) Pitch(theta) Yaw(psi), angles in radians
 % Rx_phi = [1,0,0;0,cos(phi),sin(phi);0,-sin(phi),cos(phi)];
 % Ry_theta = [cos(theta),0,-sin(theta);0,1,0;sin(theta),0,cos(theta)];
 % Rz_psi = [cos(psi),sin(psi),0;-sin(psi),cos(psi),0;0,0,1];
 % M = Rx_phi * Ry_theta * Rz_psi;
 m11= cos(theta)*cos(psi);
 m12= cos(theta)*sin(psi);
 m13=-sin(theta);
 m21=sin(phi)*sin(theta)*cos(psi)-cos(phi)*sin(psi);
 m22=sin(phi)*sin(theta)*sin(psi)+cos(phi)*cos(psi);
 m23=sin(phi)*cos(theta);
 m31=cos(phi)*sin(theta)*cos(psi)+sin(phi)*sin(psi);
 m32=cos(phi)*sin(theta)*sin(psi)-sin(phi)*cos(psi);
 m33=cos(phi)*cos(theta);
 M = [m11,m12,m13; m21,m22,m23; m31,m32,m33];
end

Roll, Pitch, Yaw
degrees

Acc (Gravity vector)
G = 1g = 1000mg

Mag (Earth mag field)
B = 10..90uT = 100..900 mG

0, 0, 0 0, 0, +G +B Cos(i), 0, +B Sin(i)

+90, 0, 0 0, +G, 0 +B Cos(i), +B Sin(i), 0

0, +90, 0 -G, 0, 0 -B Sin(i), 0, +B Cos(i)

0, 0, +90 0, 0, +G 0, -B Cos(i), +B Sin(i)

+90, +90, 0 -G, 0, 0 -B Sin(i), +B Cos(i), 0

Roll = +90 Pitch = +90 Yaw = +90 Roll = +90
Pitch = +90

Accelerometer output is
positive for axis aligned with

gravity and pointing down

Using the rotation matrix derived from the Euler angles and exploiting the fact that the
gravity vector has two components out of three equal to zero, the following function can
also be used:

function linacc = acceuler2linacc(acc,phi,theta)
 % North-East-Down reference frame
 % Roll(phi) Pitch(theta) Yaw(psi), angles in radians
 gx = -sin(theta);
 gy = cos(theta).*sin(phi);
 gz = cos(theta).*cos(phi);
 g = [gx,gy,gz]; % rotated gravity vector
 linacc = -(acc-g); % residual linear acceleration in sensor body coordinates
 % '-' because acc>0 when axis pointing down to gravity
end

Using the quaternion, the rotation can also be expressed as the product of three elements:
the conjugate quaternion, the pure quaternion corresponding to the gravity vector [0,0,0,1],
and the quaternion itself. The following function can then be used:

function linacc = accquat2linacc(acc,Q)
 % [0,gx,gy,gz] = conj(q) * [0,0,0,1] * q, in NED reference frame
 qw=Q(1); qx=Q(2); qy=Q(3); qz=Q(4); % quaternion
 gx = 2*(qx*qz-qw*qy);
 gy = 2*(qw*qx+qy*qz);
 gz = qw*qw-qx*qx-qy*qy+qz*qz;
 g = [gx,gy,gz]; % rotated gravity vector
 linacc = -(acc-g); % residual linear acceleration in sensor body coordinates
 % '-' because acc>0 when axis pointing down to gravity
end

Residual linear acceleration in terms of the world reference frame
The acceleration vector is de-rotated based on the estimated orientation of the sensor, then
the gravity vector is subtracted. Looking at Figure 1, the gravity vector is [0;0;1] (column
vector). The code is then the following:

linacc_world = -(rotM’ * acc - [0;0;1]) % the inverse of rotM is the transpose

The negative sign is due to the fact that the output of the accelerometer axis is positive
when pointing down towards the gravity vector. As an example, the Z-axis is pointing down
and a positive acceleration can be obtained by an upward motion along –Z.

The rotation matrix can be computed from the current orientation, expressed as quaternion
or Euler angles, using one of the functions presented in the previous paragraph.

The residual linear acceleration, in terms of the world reference frame, can also be
computed by de-rotating the residual linear acceleration expressed in terms of the sensor
body frame:

linacc_world = (rotM’ * linacc_body) % the inverse of rotM is the transpose

Dead-reckoning by double integration of world-referenced linear acceleration
The device velocity can be obtained by a first integration of the residual linear acceleration
in terms of the world reference frame. The device position can then be obtained by a
second integration of the velocity.

Care must be taken to eliminate any spurious offset in the residual linear acceleration. The
error induced by the spurious offset will grow linearly with time after the first integration,
and it will grow proportional to time squared after the second integration.

The spurious offset can be caused by an imperfect calibration of the accelerometer, or by
errors in the orientation estimation which in turn causes an imperfect subtraction of the
gravity vector.

The accelerometer can be calibrated using 6-tumble calibration (see Design Tip DT0053)
or by using sphere/ellipsoid fitting (see Design Tip DT0059). The former technique does
require the capability to precisely set the orientation of the device when the data point is
taken, while the latter does only require that the device is not subject to linear accelerations
when the data point is taken.

When linear acceleration is present, the orientation should be estimated by exploiting the
gyroscope (see Design Tip DT0060) and NOT by using the accelerometer data (see
Design Tip DT0058). If a gyroscope is not present in the system, a virtual gyroscope can
be emulated by exploiting the magnetometer (see Design Tip DT0104).

In the simplest implementation, the integration error can be controlled by using a leaky
integrator which is the same as using a high-pass filter to remove the continuous
component and the low-frequency portion of the velocity and position.

The reference code is listed below: acc is the Nx3 matrix holding the residual linear
acceleration in world coordinates, Ts is the sampling interval in seconds, alpha is the leaky
factor (usually set to 0.9-0.95).

% residual linear acceleration must be in world reference frame
function [poshp,velhp] = deadreckon_very_simple(acc,Ts,alpha)
 velhp=acc; poshp=acc; % pre alloc for speed
 acc=acc*9.81; % g->m/s
 %c=(1+alpha)/2; % unity gain at high frequencies
 %freqz([c -c],[1 -alpha],1024,Fs) % frequency response
 c=1; % simpler implementation but high frequencies are amplified
 for i=2:length(acc),
 % 1st integration, lin acceleration -> velocity
 velhp(i,:) = c*(acc(i,:)*Ts) + alpha*velhp(i-1,:);
 % 2nd integration, velocity -> position
 poshp(i,:) = c*(velhp(i,:)*Ts) + alpha*poshp(i-1,:);
 end;
end

Another technique which can be of help in controlling the integration error is known as
Zero-Velocity-Update (ZVU): when the modulus of the acceleration is 1g and the output of
the gyroscope is near 0, then it is assumed that the velocity is zero, and the corresponding
integrator is reset to 0. If all the conditions are met in the above code, this instruction is
executed: velhp(i,:)=[0,0,0].

It must be noted that a constant velocity would falsely trigger the ZVU reset. Then a
constant velocity must be unlikely or impossible in the application of interest.

If real-time processing is not a requirement, it is possible to smooth out the abrupt transition
that can happen when a ZVU reset happens: the residual linear acceleration can be
integrated backward from the current ZVU point to the previous ZVU point and the output of
the backward integrator can be mixed with the output of the forward integrator.

As an example, the weight W for the backward integrator output can linearly go from 1
down to 0 when going from the current ZVU point to the previous ZVU point; then the
weight for the forward integrator can simply be set to 1-W.

Support material
Related design support material

BlueMicrosystem1, Bluetooth low energy and sensors software expansion for STM32Cube

Open.MEMS, MotionFX, Real-time motion-sensor data fusion software expansion for STM32Cube

Documentation

Design Tip, DT0053, 6-point tumble sensor calibration

Design Tip, DT0058, Computing tilt measurement and tilt-compensated e-compass

Design Tip, DT0059, Ellipsoid or sphere fitting for sensor calibration

Design Tip, DT0060, Exploiting the gyroscope to update tilt measure and e-compass

Design Tip, DT0104, Exploiting the magnetometer as a virtual gyroscope at low and ultra-high spin
rates

Revision history
Date Version Changes

28-Aug-2018 1 Initial release

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements,
modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should
obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST’s terms and
conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for
application assistance or the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for
such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	Purpose and benefits
	Scope
	Residual linear acceleration in terms of the sensor body frame
	Residual linear acceleration in terms of the world reference frame
	Dead-reckoning by double integration of world-referenced linear acceleration
	Support material
	Revision history

