
UI to Backend – UART example (no OS)



UART example – Overview - UI to Backend

24

main.c Model.cpp

ScreenView.cpp

ScreenPresenter.cpp

C++ domain

C domain

UART

Event triggered by UI

e.g buttonClicked

SendMessage()

SendMessage()SendMessage()



UART example – Overview - UI to Backend - Code

25

MainView.cpp

MainPresenter.hpp

Model.cpp main.c



Backend to UI (no OS)



UART example – Overview – Backend to UI

27

main.c Model.cpp

ScreenView.cpp ScreenPresenter.cpp

C++ domain

C domain

UART

Update UI e.g. change TextArea

according to what was received

isNewValueReceived()

The system 

receives data 

from UART ISR

ModelListener.hpp

requestUIupdate()

requestUIupdate()

requestUIupdate()

In Model::tick(), you 

check if a new value 
from the UART came

newValue



UART example – Overview – Backend to UI – Code 
(1/2)

28

Model.cppmain.c



UART example – Overview – Backend to UI – Code 
(2/2)

29

Model.cpp

ModelListener.hpp

MainPresenter.cpp

MainView.cpp



• The Model has a pointer to the currently active Presenter. The type of this pointer 

is an interface (ModelListener) which you can modify to reflect the application-

specific events that are appropriate.

What’s the ModelListener ?

30

Model.cpp

Screen1Presenter.cpp

ModelListener.hpp

Screen2Presenter.cpp

Screen3Presenter.cpp

Screen1 is active



Backend to UI (with OS)



• Prerequisite : None. No need to learn extensively how FreeRTOS works.

• When using FreeRTOS, or any Embedded OS, you most likely use different tasks.

• To send information from one task to the other, you need something called a 

queue.

• Queues have 2 main benefits :

• Provide a way to communicate between tasks.

• A non-blocking communication system.

When using FreeRTOS - Queues

32



Backend to UI with queues – Overview

33

main.c Model.cpp

ScreenView.cpp ScreenPresenter.cpp

C++ domain

C domain

UART

Update UI e.g. change TextArea

according to what was received

The system 

receives data 

from UART ISR

ModelListener.hpp

requestUIupdate()

requestUIupdate()

requestUIupdate()

In Model::tick(), you 

check if new data 
arrived in the queue

Automatically 

sends the data 

to the model 

via a queue.



Queues for multi-tasks communication

34

Task UART Task GUI

C++ domain

C domain

UART

Checks that 

some new data 

was received

ModelListener.hpp

requestUIupdate()

In Model::tick(), you 

check if new data 
arrived in the queue

Automatically 

sends the data 

to the model 

via a queue.



• For using queues with FreeRTOS you only need to know the following elements.

• A queue is declared like this : 

• xQueueHandle myQueue;

• A queue is created as follows : 

• myQueue = xQueueCreate(nbElements, sizeof(element));

• To add an element in a queue :

• xQueueSendFromISR(myQueue, &element, 0); // When call inside an interrupt handler

• xQueueSendToBack(myQueue, &element, 0); //When called from a task

• To check if an element is in the queue : 

• if (uxQueueMessagesWaiting(myQueue) > 0) { /* Retrieve new data */ }

• To take the element from the queue :

• xQueueReceive(myQueue, &newValue, 0); // newValue is the new value received from the queue

FreeRTOS Queue API

35



Backend to UI with queues – Example – main.c

36

Declaration of the queue

Creation of a queue of 

size one uint8_t element

Ready to receive a value 

through UART

Ready to receive a new 

value through UART

Send data received 

through UART to the 

queue



Backend to UI with queues – Example – Model.cpp

37

We are in a C++ file, so everything linked to a 

C file needs to be encapsulated in extern “C”

Necessary includes to be able to use queues

Checking if a new value is in the queue

Receiving the new value from the queue

Update UI according to the new value


