/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2021 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under Ultimate Liberty license * SLA0044, the "License"; You may not use this file except in compliance with * the License. You may obtain a copy of the License at: * www.st.com/SLA0044 * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "stdio.h" #include "string.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; ADC_HandleTypeDef hadc2; CORDIC_HandleTypeDef hcordic; DAC_HandleTypeDef hdac1; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim3; UART_HandleTypeDef huart2; DMA_HandleTypeDef hdma_usart2_rx; DMA_HandleTypeDef hdma_usart2_tx; /* USER CODE BEGIN PV */ RegConv_t PotentiometerConv; uint8_t PotentiometerHandle; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_ADC1_Init(void); static void MX_ADC2_Init(void); static void MX_CORDIC_Init(void); static void MX_DAC1_Init(void); static void MX_TIM1_Init(void); static void MX_TIM2_Init(void); static void MX_USART2_UART_Init(void); static void MX_TIM3_Init(void); static void MX_NVIC_Init(void); /* USER CODE BEGIN PFP */ void PotentiometerHandleSpeed(void); void PotentiometerInitialise (void); float position=0; static uint16_t pot=0; float x=0; int new_position=0; int divider=215000; extern int new_position; extern int divider; static float position_change=0; static float position_divider= 100000.0; /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ #ifdef __GNUC__ /* With GCC/RAISONANCE, small printf (option LD Linker->Libraries->Small printf set to 'Yes') calls __io_putchar() */ #define PUTCHAR_PROTOTYPE int __io_putchar(int ch) #else #define PUTCHAR_PROTOTYPE int fputc(int ch, FILE *f) #endif /* __GNUC__ */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_ADC1_Init(); MX_ADC2_Init(); MX_CORDIC_Init(); MX_DAC1_Init(); MX_TIM1_Init(); MX_TIM2_Init(); MX_USART2_UART_Init(); MX_MotorControl_Init(); MX_TIM3_Init(); /* Initialize interrupts */ MX_NVIC_Init(); /* USER CODE BEGIN 2 */ PotentiometerInitialise(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ MC_StartMotor1(); while(MC_GetAlignmentStatusMotor1()!=TC_ALIGNMENT_COMPLETED){} HAL_NVIC_SetPriority(TIM3_IRQn, 4, 2); HAL_TIM_Base_Start_IT(&htim3); while (1) { PotentiometerHandleSpeed(); /* position_change=(float)new_position/position_divider; position-=position_change; MC_ProgramPositionCommandMotor1(position,0); */ /* MC_ProgramPositionCommandMotor1(3.14/2,0.1); HAL_Delay(2000); MC_ProgramPositionCommandMotor1(-3.14/2,0.1); HAL_Delay(2000); */ /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; RCC_PeriphCLKInitTypeDef PeriphClkInit = {0}; /** Configure the main internal regulator output voltage */ HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV6; RCC_OscInitStruct.PLL.PLLN = 85; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV8; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } /** Initializes the peripherals clocks */ PeriphClkInit.PeriphClockSelection = RCC_PERIPHCLK_USART2|RCC_PERIPHCLK_ADC12; PeriphClkInit.Usart2ClockSelection = RCC_USART2CLKSOURCE_PCLK1; PeriphClkInit.Adc12ClockSelection = RCC_ADC12CLKSOURCE_PLL; if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInit) != HAL_OK) { Error_Handler(); } /** Enables the Clock Security System */ HAL_RCC_EnableCSS(); } /** * @brief NVIC Configuration. * @retval None */ static void MX_NVIC_Init(void) { /* TIM1_BRK_TIM15_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM1_BRK_TIM15_IRQn, 4, 1); HAL_NVIC_EnableIRQ(TIM1_BRK_TIM15_IRQn); /* TIM1_UP_TIM16_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM1_UP_TIM16_IRQn, 0, 0); HAL_NVIC_EnableIRQ(TIM1_UP_TIM16_IRQn); /* ADC1_2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(ADC1_2_IRQn, 2, 0); HAL_NVIC_EnableIRQ(ADC1_2_IRQn); /* TIM2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(TIM2_IRQn, 3, 0); HAL_NVIC_EnableIRQ(TIM2_IRQn); /* USART2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(USART2_IRQn, 3, 1); HAL_NVIC_EnableIRQ(USART2_IRQn); /* EXTI15_10_IRQn interrupt configuration */ HAL_NVIC_SetPriority(EXTI15_10_IRQn, 3, 0); HAL_NVIC_EnableIRQ(EXTI15_10_IRQn); /* DMA2_Channel2_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Channel2_IRQn, 0, 0); HAL_NVIC_EnableIRQ(DMA2_Channel2_IRQn); } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_MultiModeTypeDef multimode = {0}; ADC_InjectionConfTypeDef sConfigInjected = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_LEFT; hadc1.Init.GainCompensation = 0; hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure the ADC multi-mode */ multimode.Mode = ADC_MODE_INDEPENDENT; if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } /** Configure Injected Channel */ sConfigInjected.InjectedChannel = ADC_CHANNEL_1; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1; sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_6CYCLES_5; sConfigInjected.InjectedSingleDiff = ADC_SINGLE_ENDED; sConfigInjected.InjectedOffsetNumber = ADC_OFFSET_NONE; sConfigInjected.InjectedOffset = 0; sConfigInjected.InjectedNbrOfConversion = 2; sConfigInjected.InjectedDiscontinuousConvMode = DISABLE; sConfigInjected.AutoInjectedConv = DISABLE; sConfigInjected.QueueInjectedContext = DISABLE; sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJEC_T1_TRGO; sConfigInjected.ExternalTrigInjecConvEdge = ADC_EXTERNALTRIGINJECCONV_EDGE_RISING; sConfigInjected.InjecOversamplingMode = DISABLE; if (HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected) != HAL_OK) { Error_Handler(); } /** Configure Injected Channel */ sConfigInjected.InjectedChannel = ADC_CHANNEL_7; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2; if (HAL_ADCEx_InjectedConfigChannel(&hadc1, &sConfigInjected) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_24CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief ADC2 Initialization Function * @param None * @retval None */ static void MX_ADC2_Init(void) { /* USER CODE BEGIN ADC2_Init 0 */ /* USER CODE END ADC2_Init 0 */ ADC_InjectionConfTypeDef sConfigInjected = {0}; ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC2_Init 1 */ /* USER CODE END ADC2_Init 1 */ /** Common config */ hadc2.Instance = ADC2; hadc2.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc2.Init.Resolution = ADC_RESOLUTION_12B; hadc2.Init.DataAlign = ADC_DATAALIGN_LEFT; hadc2.Init.GainCompensation = 0; hadc2.Init.ScanConvMode = ADC_SCAN_ENABLE; hadc2.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc2.Init.LowPowerAutoWait = DISABLE; hadc2.Init.ContinuousConvMode = DISABLE; hadc2.Init.NbrOfConversion = 3; hadc2.Init.DiscontinuousConvMode = DISABLE; hadc2.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc2.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc2.Init.DMAContinuousRequests = DISABLE; hadc2.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc2.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc2) != HAL_OK) { Error_Handler(); } /** Configure Injected Channel */ sConfigInjected.InjectedChannel = ADC_CHANNEL_7; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_1; sConfigInjected.InjectedSamplingTime = ADC_SAMPLETIME_6CYCLES_5; sConfigInjected.InjectedSingleDiff = ADC_SINGLE_ENDED; sConfigInjected.InjectedOffsetNumber = ADC_OFFSET_NONE; sConfigInjected.InjectedOffset = 0; sConfigInjected.InjectedNbrOfConversion = 2; sConfigInjected.InjectedDiscontinuousConvMode = DISABLE; sConfigInjected.AutoInjectedConv = DISABLE; sConfigInjected.QueueInjectedContext = DISABLE; sConfigInjected.ExternalTrigInjecConv = ADC_EXTERNALTRIGINJEC_T1_TRGO; sConfigInjected.ExternalTrigInjecConvEdge = ADC_EXTERNALTRIGINJECCONV_EDGE_RISING; sConfigInjected.InjecOversamplingMode = DISABLE; if (HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected) != HAL_OK) { Error_Handler(); } /** Configure Injected Channel */ sConfigInjected.InjectedChannel = ADC_CHANNEL_6; sConfigInjected.InjectedRank = ADC_INJECTED_RANK_2; if (HAL_ADCEx_InjectedConfigChannel(&hadc2, &sConfigInjected) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_2; sConfig.Rank = ADC_REGULAR_RANK_3; sConfig.SamplingTime = ADC_SAMPLETIME_47CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_8; sConfig.Rank = ADC_REGULAR_RANK_2; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_14; sConfig.Rank = ADC_REGULAR_RANK_1; if (HAL_ADC_ConfigChannel(&hadc2, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC2_Init 2 */ /* USER CODE END ADC2_Init 2 */ } /** * @brief CORDIC Initialization Function * @param None * @retval None */ static void MX_CORDIC_Init(void) { /* USER CODE BEGIN CORDIC_Init 0 */ /* USER CODE END CORDIC_Init 0 */ /* USER CODE BEGIN CORDIC_Init 1 */ /* USER CODE END CORDIC_Init 1 */ hcordic.Instance = CORDIC; if (HAL_CORDIC_Init(&hcordic) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN CORDIC_Init 2 */ /* USER CODE END CORDIC_Init 2 */ } /** * @brief DAC1 Initialization Function * @param None * @retval None */ static void MX_DAC1_Init(void) { /* USER CODE BEGIN DAC1_Init 0 */ /* USER CODE END DAC1_Init 0 */ DAC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN DAC1_Init 1 */ /* USER CODE END DAC1_Init 1 */ /** DAC Initialization */ hdac1.Instance = DAC1; if (HAL_DAC_Init(&hdac1) != HAL_OK) { Error_Handler(); } /** DAC channel OUT1 config */ sConfig.DAC_HighFrequency = DAC_HIGH_FREQUENCY_INTERFACE_MODE_AUTOMATIC; sConfig.DAC_DMADoubleDataMode = DISABLE; sConfig.DAC_SignedFormat = DISABLE; sConfig.DAC_SampleAndHold = DAC_SAMPLEANDHOLD_DISABLE; sConfig.DAC_Trigger = DAC_TRIGGER_SOFTWARE; sConfig.DAC_Trigger2 = DAC_TRIGGER_NONE; sConfig.DAC_OutputBuffer = DAC_OUTPUTBUFFER_DISABLE; sConfig.DAC_ConnectOnChipPeripheral = DAC_CHIPCONNECT_EXTERNAL; sConfig.DAC_UserTrimming = DAC_TRIMMING_FACTORY; if (HAL_DAC_ConfigChannel(&hdac1, &sConfig, DAC_CHANNEL_1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN DAC1_Init 2 */ /* USER CODE END DAC1_Init 2 */ } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_SlaveConfigTypeDef sSlaveConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; TIMEx_BreakInputConfigTypeDef sBreakInputConfig = {0}; TIM_OC_InitTypeDef sConfigOC = {0}; TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = ((TIM_CLOCK_DIVIDER) - 1); htim1.Init.CounterMode = TIM_COUNTERMODE_CENTERALIGNED1; htim1.Init.Period = ((PWM_PERIOD_CYCLES) / 2); htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV2; htim1.Init.RepetitionCounter = (REP_COUNTER); htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) { Error_Handler(); } sSlaveConfig.SlaveMode = TIM_SLAVEMODE_TRIGGER; sSlaveConfig.InputTrigger = TIM_TS_ITR1; if (HAL_TIM_SlaveConfigSynchro(&htim1, &sSlaveConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_OC4REF; sMasterConfig.MasterOutputTrigger2 = TIM_TRGO2_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } sBreakInputConfig.Source = TIM_BREAKINPUTSOURCE_BKIN; sBreakInputConfig.Enable = TIM_BREAKINPUTSOURCE_ENABLE; sBreakInputConfig.Polarity = TIM_BREAKINPUTSOURCE_POLARITY_LOW; if (HAL_TIMEx_ConfigBreakInput(&htim1, TIM_BREAKINPUT_BRK2, &sBreakInputConfig) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCNPolarity = TIM_OCNPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; sConfigOC.OCIdleState = TIM_OCIDLESTATE_RESET; sConfigOC.OCNIdleState = TIM_OCNIDLESTATE_RESET; if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_2) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_3) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM2; if (HAL_TIM_PWM_ConfigChannel(&htim1, &sConfigOC, TIM_CHANNEL_4) != HAL_OK) { Error_Handler(); } sBreakDeadTimeConfig.OffStateRunMode = TIM_OSSR_ENABLE; sBreakDeadTimeConfig.OffStateIDLEMode = TIM_OSSI_ENABLE; sBreakDeadTimeConfig.LockLevel = TIM_LOCKLEVEL_1; sBreakDeadTimeConfig.DeadTime = 0; sBreakDeadTimeConfig.BreakState = TIM_BREAK_DISABLE; sBreakDeadTimeConfig.BreakPolarity = TIM_BREAKPOLARITY_LOW; sBreakDeadTimeConfig.BreakFilter = 0; sBreakDeadTimeConfig.BreakAFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.Break2State = TIM_BREAK2_ENABLE; sBreakDeadTimeConfig.Break2Polarity = TIM_BREAK2POLARITY_HIGH; sBreakDeadTimeConfig.Break2Filter = 3; sBreakDeadTimeConfig.Break2AFMode = TIM_BREAK_AFMODE_INPUT; sBreakDeadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE; if (HAL_TIMEx_ConfigBreakDeadTime(&htim1, &sBreakDeadTimeConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ HAL_TIM_MspPostInit(&htim1); } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_Encoder_InitTypeDef sConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 0; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = M1_PULSE_NBR; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; sConfig.EncoderMode = TIM_ENCODERMODE_TI12; sConfig.IC1Polarity = TIM_ICPOLARITY_RISING; sConfig.IC1Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC1Prescaler = TIM_ICPSC_DIV1; sConfig.IC1Filter = M1_ENC_IC_FILTER; sConfig.IC2Polarity = TIM_ICPOLARITY_RISING; sConfig.IC2Selection = TIM_ICSELECTION_DIRECTTI; sConfig.IC2Prescaler = TIM_ICPSC_DIV1; sConfig.IC2Filter = M1_ENC_IC_FILTER; if (HAL_TIM_Encoder_Init(&htim2, &sConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief TIM3 Initialization Function * @param None * @retval None */ static void MX_TIM3_Init(void) { /* USER CODE BEGIN TIM3_Init 0 */ /* USER CODE END TIM3_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM3_Init 1 */ /* USER CODE END TIM3_Init 1 */ htim3.Instance = TIM3; htim3.Init.Prescaler = 170; htim3.Init.CounterMode = TIM_COUNTERMODE_UP; htim3.Init.Period = 1000; htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim3) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM3_Init 2 */ /* USER CODE END TIM3_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 1843200; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; huart2.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; huart2.Init.ClockPrescaler = UART_PRESCALER_DIV1; huart2.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetTxFifoThreshold(&huart2, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_SetRxFifoThreshold(&huart2, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK) { Error_Handler(); } if (HAL_UARTEx_DisableFifoMode(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMAMUX1_CLK_ENABLE(); __HAL_RCC_DMA2_CLK_ENABLE(); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, M1_PWM_EN_U_Pin|M1_PWM_EN_V_Pin|M1_PWM_EN_W_Pin, GPIO_PIN_RESET); /*Configure GPIO pin : Start_Stop_Pin */ GPIO_InitStruct.Pin = Start_Stop_Pin; GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(Start_Stop_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pin : LD2_Pin */ GPIO_InitStruct.Pin = LD2_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(LD2_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : M1_PWM_EN_U_Pin M1_PWM_EN_V_Pin M1_PWM_EN_W_Pin */ GPIO_InitStruct.Pin = M1_PWM_EN_U_Pin|M1_PWM_EN_V_Pin|M1_PWM_EN_W_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLDOWN; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); } /* USER CODE BEGIN 4 */ void PotentiometerInitialise (void) { PotentiometerConv.regADC = ADC2; PotentiometerConv.channel = ADC_CHANNEL_14; PotentiometerConv.samplingTime = ADC_SAMPLETIME_47CYCLES_5; PotentiometerHandle = RCM_RegisterRegConv(&PotentiometerConv); } void ADC_request (void) { if(RCM_GetUserConvState() == RCM_USERCONV_IDLE) /*if Idle, then program a new conversion request*/ RCM_RequestUserConv(PotentiometerHandle); } void PotentiometerHandleSpeed(void) { State_t motorState = MC_GetSTMStateMotor1(); static signed int new_pot=0; if((motorState == IDLE) || (motorState == RUN)) { ADC_request(); if (RCM_GetUserConvState() == RCM_USERCONV_EOC) //if conversion is ready to be read { pot = RCM_GetUserConv(); //this returns the ADC value (the returned value is between [0 and 65535] where the max value equivals to 3,3V) if (pot>high_ref) //values above 1.675V { new_pot=pot-high_ref; //new_pot=new_pot; new_position=new_pot; //max value 32268 } else if (pot