/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * Copyright (c) 2024 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ /* Definitions of environment analog values */ /* Value of analog reference voltage (Vref+), connected to analog voltage */ /* supply Vdda (unit: mV). */ #define VDDA_APPLI (3300UL) /* Init variable out of expected ADC conversion data range */ #define VAR_CONVERTED_DATA_INIT_VALUE (__LL_ADC_DIGITAL_SCALE(LL_ADC_RESOLUTION_12B) + 1) /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ int value = 0; /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc1; /* USER CODE BEGIN PV */ /* Variables for ADC conversion data */ __IO uint16_t uhADCxConvertedData = VAR_CONVERTED_DATA_INIT_VALUE; /* ADC group regular conversion data */ /* Variables for ADC conversion data computation to physical values */ uint16_t uhADCxConvertedData_Voltage_mVolt = 0; /* Value of voltage calculated from ADC conversion data (unit: mV) */ /* Variable to report status of ADC group regular unitary conversion */ /* 0: ADC group regular unitary conversion is not completed */ /* 1: ADC group regular unitary conversion is completed */ /* 2: ADC group regular unitary conversion has not been started yet */ /* (initial state) */ __IO uint8_t ubAdcGrpRegularUnitaryConvStatus = 2; /* Variable set into ADC interruption callback */ /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); static void MX_ICACHE_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_ADC1_Init(); MX_ICACHE_Init(); /* USER CODE BEGIN 2 */ /* Perform ADC calibration */ if (HAL_ADCEx_Calibration_Start(&hadc1, ADC_SINGLE_ENDED) != HAL_OK) { /* Calibration Error */ Error_Handler(); } // HAL_ADC_Start(&hadc1); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* Start ADC group regular conversion */ if (HAL_ADC_Start_IT(&hadc1) != HAL_OK) { /* Error: ADC conversion start could not be performed */ Error_Handler(); } /* For this example purpose, wait until conversion is done */ while (ubAdcGrpRegularUnitaryConvStatus != 1); /* Reset status variable of ADC group regular unitary conversion */ ubAdcGrpRegularUnitaryConvStatus = 0; /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3); while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {} /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSIDiv = RCC_HSI_DIV2; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2 |RCC_CLOCKTYPE_PCLK3; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK) { Error_Handler(); } } /** * @brief ADC1 Initialization Function * @param None * @retval None */ static void MX_ADC1_Init(void) { /* USER CODE BEGIN ADC1_Init 0 */ /* USER CODE END ADC1_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC1_Init 1 */ /* USER CODE END ADC1_Init 1 */ /** Common config */ hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc1.Init.LowPowerAutoWait = DISABLE; hadc1.Init.ContinuousConvMode = DISABLE; hadc1.Init.NbrOfConversion = 1; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DMAContinuousRequests = DISABLE; hadc1.Init.SamplingMode = ADC_SAMPLING_MODE_NORMAL; hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc1.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } /** Configure Regular Channel */ sConfig.Channel = ADC_CHANNEL_9; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_2CYCLES_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC1_Init 2 */ /* USER CODE END ADC1_Init 2 */ } /** * @brief ICACHE Initialization Function * @param None * @retval None */ static void MX_ICACHE_Init(void) { /* USER CODE BEGIN ICACHE_Init 0 */ /* USER CODE END ICACHE_Init 0 */ /* USER CODE BEGIN ICACHE_Init 1 */ /* USER CODE END ICACHE_Init 1 */ /** Enable instruction cache in 1-way (direct mapped cache) */ if (HAL_ICACHE_ConfigAssociativityMode(ICACHE_1WAY) != HAL_OK) { Error_Handler(); } if (HAL_ICACHE_Enable() != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ICACHE_Init 2 */ /* USER CODE END ICACHE_Init 2 */ } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { /* USER CODE BEGIN MX_GPIO_Init_1 */ /* USER CODE END MX_GPIO_Init_1 */ /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOB_CLK_ENABLE(); /* USER CODE BEGIN MX_GPIO_Init_2 */ /* USER CODE END MX_GPIO_Init_2 */ } /* USER CODE BEGIN 4 */ /** * @brief Conversion transfer complete callback * @note This function is executed when the transfer complete interrupt * is generated * @retval None */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc) { /* Retrieve ADC conversion data */ uhADCxConvertedData = HAL_ADC_GetValue(hadc); /* Computation of ADC conversions raw data to physical values */ /* using helper macro. */ uhADCxConvertedData_Voltage_mVolt = __LL_ADC_CALC_DATA_TO_VOLTAGE(VDDA_APPLI, uhADCxConvertedData, LL_ADC_RESOLUTION_12B); /* Update status variable of ADC unitary conversion */ ubAdcGrpRegularUnitaryConvStatus = 1; } /** * @brief ADC error interruption callback * @retval None */ void HAL_ADC_ErrorCallback(ADC_HandleTypeDef *hadc) { /* Note: Disable ADC interruption that caused this error before entering in infinite loop below. */ /* In case of error due to overrun: Disable ADC group regular overrun interruption */ LL_ADC_DisableIT_OVR(ADC1); /* Error reporting */ Error_Handler(); } /* USER CODE END 4 */ /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ __disable_irq(); while (1) { } /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */