/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2020 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** * Motor Shield - STM32F407ZTG6 * ---------------------------- * /OE - 7 - PG2 OE * RCK - 12 - PG4 latchpin * SCK - 4 - PG5 clockpin * SER - 8 - PG3 datapin * M1PWM - 11 - x * M2PWM - 3 - x * M3PWM - 6 - PF8 * M4PWM - 5 - PF7 * CLR - 2 - PG6 * ---------------------------- * */ /* USER CODE END Header */ /* Includes ------------------------------------------------------------------*/ #include "main.h" #include "cmsis_os.h" #include "fatfs.h" /* Private includes ----------------------------------------------------------*/ /* USER CODE BEGIN Includes */ #include "mmsj800.h" #include "stm32fxxx_hal.h" #include "tm_stm32_delay.h" #include "tm_stm32_mpu6050.h" /* USER CODE END Includes */ /* Private typedef -----------------------------------------------------------*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ------------------------------------------------------------*/ /* USER CODE BEGIN PD */ #define _INIT_RTC_DATE_TIME_ 1 /* USER CODE END PD */ /* Private macro -------------------------------------------------------------*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ---------------------------------------------------------*/ ADC_HandleTypeDef hadc3; I2C_HandleTypeDef hi2c1; I2C_HandleTypeDef hi2c2; RTC_HandleTypeDef hrtc; SD_HandleTypeDef hsd; DMA_HandleTypeDef hdma_sdio_rx; DMA_HandleTypeDef hdma_sdio_tx; TIM_HandleTypeDef htim1; TIM_HandleTypeDef htim2; TIM_HandleTypeDef htim11; TIM_HandleTypeDef htim13; UART_HandleTypeDef huart1; UART_HandleTypeDef huart2; SRAM_HandleTypeDef hsram1; osThreadId defaultTaskHandle; osThreadId processTaskHandle; osThreadId touchScreenTaskHandle; osThreadId lcdTaskHandle; osThreadId keyboardTchTaskHandle; osMessageQId tftTouchTypeQueueHandle; osMessageQId tftTouchPosQueueHandle; osMessageQId tftUpdDTQueueHandle; osMessageQId tftUpdWinQueueHandle; osMessageQId kbdDataQueueHandle; osMessageQId tftUpdGuiQueueHandle; osMutexId tftSemMutexHandle; osMutexId rtcSemMutexHandle; osMutexId uartSemMutexHandle; /* USER CODE BEGIN PV */ char pZero = 0, pHum = 1; osPoolId MpoolMessageHandle; /* USER CODE END PV */ /* Private function prototypes -----------------------------------------------*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_DMA_Init(void); static void MX_USART1_UART_Init(void); static void MX_USART2_UART_Init(void); static void MX_RTC_Init(void); static void MX_TIM1_Init(void); static void MX_ADC3_Init(void); static void MX_FSMC_Init(void); static void MX_I2C2_Init(void); static void MX_TIM2_Init(void); static void MX_TIM11_Init(void); static void MX_TIM13_Init(void); static void MX_SDIO_SD_Init(void); static void MX_I2C1_Init(void); void StartDefaultTask(void const * argument); void StartProcessTask(void const * argument); void StartToushScreenTask(void const * argument); void StartLcdTask(void const * argument); void StartKeyboardTchTask(void const * argument); /* USER CODE BEGIN PFP */ char fMounted; unsigned char vMotor[8] = {0,0,0,0,0,0,0,0}; //TM_MPU6050_t MPU6050; /* USER CODE END PFP */ /* Private user code ---------------------------------------------------------*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration--------------------------------------------------------*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_DMA_Init(); MX_USART1_UART_Init(); MX_USART2_UART_Init(); MX_RTC_Init(); MX_TIM1_Init(); MX_ADC3_Init(); MX_FSMC_Init(); MX_I2C2_Init(); MX_TIM2_Init(); MX_TIM11_Init(); MX_TIM13_Init(); MX_SDIO_SD_Init(); MX_FATFS_Init(); MX_I2C1_Init(); /* USER CODE BEGIN 2 */ HAL_TIM_Base_Start(&htim1); HAL_TIM_Base_Start(&htim2); /* TM_RCC_InitSystem();*/ /* if (TM_MPU6050_Init(&MPU6050, TM_MPU6050_Device_0, TM_MPU6050_Accelerometer_8G, TM_MPU6050_Gyroscope_250s) == TM_MPU6050_Result_Ok) { TM_MPU6050_ReadAll(&MPU6050); }*/ /* USER CODE END 2 */ /* Create the mutex(es) */ /* definition and creation of tftSemMutex */ osMutexDef(tftSemMutex); tftSemMutexHandle = osMutexCreate(osMutex(tftSemMutex)); /* definition and creation of rtcSemMutex */ osMutexDef(rtcSemMutex); rtcSemMutexHandle = osMutexCreate(osMutex(rtcSemMutex)); /* definition and creation of uartSemMutex */ osMutexDef(uartSemMutex); uartSemMutexHandle = osMutexCreate(osMutex(uartSemMutex)); /* USER CODE BEGIN RTOS_MUTEX */ /* add mutexes, ... */ /* USER CODE END RTOS_MUTEX */ /* USER CODE BEGIN RTOS_SEMAPHORES */ /* add semaphores, ... */ /* USER CODE END RTOS_SEMAPHORES */ /* USER CODE BEGIN RTOS_TIMERS */ /* start timers, add new ones, ... */ /* USER CODE END RTOS_TIMERS */ /* Create the queue(s) */ /* definition and creation of tftTouchTypeQueue */ osMessageQDef(tftTouchTypeQueue, 1, char); tftTouchTypeQueueHandle = osMessageCreate(osMessageQ(tftTouchTypeQueue), NULL); /* definition and creation of tftTouchPosQueue */ osMessageQDef(tftTouchPosQueue, 1, TSData); tftTouchPosQueueHandle = osMessageCreate(osMessageQ(tftTouchPosQueue), NULL); /* definition and creation of tftUpdDTQueue */ osMessageQDef(tftUpdDTQueue, 1, char); tftUpdDTQueueHandle = osMessageCreate(osMessageQ(tftUpdDTQueue), NULL); /* definition and creation of tftUpdWinQueue */ osMessageQDef(tftUpdWinQueue, 1, char); tftUpdWinQueueHandle = osMessageCreate(osMessageQ(tftUpdWinQueue), NULL); /* definition and creation of kbdDataQueue */ osMessageQDef(kbdDataQueue, 1, KbdData); kbdDataQueueHandle = osMessageCreate(osMessageQ(kbdDataQueue), NULL); /* definition and creation of tftUpdGuiQueue */ osMessageQDef(tftUpdGuiQueue, 1, char); tftUpdGuiQueueHandle = osMessageCreate(osMessageQ(tftUpdGuiQueue), NULL); /* USER CODE BEGIN RTOS_QUEUES */ /* USER CODE END RTOS_QUEUES */ /* Create the thread(s) */ /* definition and creation of defaultTask */ osThreadDef(defaultTask, StartDefaultTask, osPriorityBelowNormal, 0, 128); defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL); /* definition and creation of processTask */ osThreadDef(processTask, StartProcessTask, osPriorityAboveNormal, 0, 8192); processTaskHandle = osThreadCreate(osThread(processTask), NULL); /* definition and creation of touchScreenTask */ osThreadDef(touchScreenTask, StartToushScreenTask, osPriorityNormal, 0, 512); touchScreenTaskHandle = osThreadCreate(osThread(touchScreenTask), NULL); /* definition and creation of lcdTask */ osThreadDef(lcdTask, StartLcdTask, osPriorityNormal, 0, 256); lcdTaskHandle = osThreadCreate(osThread(lcdTask), NULL); /* definition and creation of keyboardTchTask */ osThreadDef(keyboardTchTask, StartKeyboardTchTask, osPriorityNormal, 0, 256); keyboardTchTaskHandle = osThreadCreate(osThread(keyboardTchTask), NULL); /* USER CODE BEGIN RTOS_THREADS */ /* add threads, ... */ /* USER CODE END RTOS_THREADS */ /* Start scheduler */ osKernelStart(); /* We should never get here as control is now taken by the scheduler */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { /* USER CODE END WHILE */ /* USER CODE BEGIN 3 */ } /* USER CODE END 3 */ } /** * @brief System Clock Configuration * @retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0}; /** Configure the main internal regulator output voltage */ __HAL_RCC_PWR_CLK_ENABLE(); __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /** Initializes the RCC Oscillators according to the specified parameters * in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI; RCC_OscInitStruct.PLL.PLLM = 16; RCC_OscInitStruct.PLL.PLLN = 336; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = 7; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /** Initializes the CPU, AHB and APB buses clocks */ RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4; if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK) { Error_Handler(); } } /** * @brief ADC3 Initialization Function * @param None * @retval None */ static void MX_ADC3_Init(void) { /* USER CODE BEGIN ADC3_Init 0 */ /* USER CODE END ADC3_Init 0 */ ADC_ChannelConfTypeDef sConfig = {0}; /* USER CODE BEGIN ADC3_Init 1 */ /* USER CODE END ADC3_Init 1 */ /** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion) */ hadc3.Instance = ADC3; hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8; hadc3.Init.Resolution = ADC_RESOLUTION_10B; hadc3.Init.ScanConvMode = DISABLE; hadc3.Init.ContinuousConvMode = DISABLE; hadc3.Init.DiscontinuousConvMode = DISABLE; hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc3.Init.NbrOfConversion = 1; hadc3.Init.DMAContinuousRequests = DISABLE; hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV; if (HAL_ADC_Init(&hadc3) != HAL_OK) { Error_Handler(); } /** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time. */ sConfig.Channel = ADC_CHANNEL_4; sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN ADC3_Init 2 */ sConfig.Rank = 0; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } /* USER CODE END ADC3_Init 2 */ } /** * @brief I2C1 Initialization Function * @param None * @retval None */ static void MX_I2C1_Init(void) { /* USER CODE BEGIN I2C1_Init 0 */ /* USER CODE END I2C1_Init 0 */ /* USER CODE BEGIN I2C1_Init 1 */ /* USER CODE END I2C1_Init 1 */ hi2c1.Instance = I2C1; hi2c1.Init.ClockSpeed = 100000; hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c1.Init.OwnAddress1 = 0; hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c1.Init.OwnAddress2 = 0; hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C1_Init 2 */ /* USER CODE END I2C1_Init 2 */ } /** * @brief I2C2 Initialization Function * @param None * @retval None */ static void MX_I2C2_Init(void) { /* USER CODE BEGIN I2C2_Init 0 */ /* USER CODE END I2C2_Init 0 */ /* USER CODE BEGIN I2C2_Init 1 */ /* USER CODE END I2C2_Init 1 */ hi2c2.Instance = I2C2; hi2c2.Init.ClockSpeed = 100000; hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2; hi2c2.Init.OwnAddress1 = 0; hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT; hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE; hi2c2.Init.OwnAddress2 = 0; hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE; hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE; if (HAL_I2C_Init(&hi2c2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN I2C2_Init 2 */ /* USER CODE END I2C2_Init 2 */ } /** * @brief RTC Initialization Function * @param None * @retval None */ static void MX_RTC_Init(void) { /* USER CODE BEGIN RTC_Init 0 */ /* USER CODE END RTC_Init 0 */ RTC_TimeTypeDef sTime = {0}; RTC_DateTypeDef sDate = {0}; /* USER CODE BEGIN RTC_Init 1 */ /* USER CODE END RTC_Init 1 */ /** Initialize RTC Only */ hrtc.Instance = RTC; hrtc.Init.HourFormat = RTC_HOURFORMAT_24; hrtc.Init.AsynchPrediv = 127; hrtc.Init.SynchPrediv = 255; hrtc.Init.OutPut = RTC_OUTPUT_DISABLE; hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH; hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN; if (HAL_RTC_Init(&hrtc) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN Check_RTC_BKUP */ if(HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR0) != 0x32F2) { #if _INIT_RTC_DATE_TIME_ /* USER CODE END Check_RTC_BKUP */ /** Initialize RTC and set the Time and Date */ sTime.Hours = 0; sTime.Minutes = 0; sTime.Seconds = 0; sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE; sTime.StoreOperation = RTC_STOREOPERATION_RESET; if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } sDate.WeekDay = RTC_WEEKDAY_MONDAY; sDate.Month = RTC_MONTH_MAY; sDate.Date = 8; sDate.Year = 20; if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN RTC_Init 2 */ #endif HAL_RTCEx_BKUPWrite(&hrtc,RTC_BKP_DR0,0x32F2); } /* USER CODE END RTC_Init 2 */ } /** * @brief SDIO Initialization Function * @param None * @retval None */ static void MX_SDIO_SD_Init(void) { /* USER CODE BEGIN SDIO_Init 0 */ /* USER CODE END SDIO_Init 0 */ /* USER CODE BEGIN SDIO_Init 1 */ /* USER CODE END SDIO_Init 1 */ hsd.Instance = SDIO; hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING; hsd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE; hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE; hsd.Init.BusWide = SDIO_BUS_WIDE_1B; hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE; hsd.Init.ClockDiv = 4; /* USER CODE BEGIN SDIO_Init 2 */ /* USER CODE END SDIO_Init 2 */ } /** * @brief TIM1 Initialization Function * @param None * @retval None */ static void MX_TIM1_Init(void) { /* USER CODE BEGIN TIM1_Init 0 */ /* USER CODE END TIM1_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM1_Init 1 */ /* USER CODE END TIM1_Init 1 */ htim1.Instance = TIM1; htim1.Init.Prescaler = 84-1; htim1.Init.CounterMode = TIM_COUNTERMODE_UP; htim1.Init.Period = 0xffff-1; htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim1.Init.RepetitionCounter = 0; htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim1) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM1_Init 2 */ /* USER CODE END TIM1_Init 2 */ } /** * @brief TIM2 Initialization Function * @param None * @retval None */ static void MX_TIM2_Init(void) { /* USER CODE BEGIN TIM2_Init 0 */ /* USER CODE END TIM2_Init 0 */ TIM_ClockConfigTypeDef sClockSourceConfig = {0}; TIM_MasterConfigTypeDef sMasterConfig = {0}; /* USER CODE BEGIN TIM2_Init 1 */ /* USER CODE END TIM2_Init 1 */ htim2.Instance = TIM2; htim2.Init.Prescaler = 83; htim2.Init.CounterMode = TIM_COUNTERMODE_UP; htim2.Init.Period = 63999; htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE; if (HAL_TIM_Base_Init(&htim2) != HAL_OK) { Error_Handler(); } sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL; if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK) { Error_Handler(); } sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET; sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE; if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN TIM2_Init 2 */ /* USER CODE END TIM2_Init 2 */ } /** * @brief TIM11 Initialization Function * @param None * @retval None */ static void MX_TIM11_Init(void) { /* USER CODE BEGIN TIM11_Init 0 */ /* USER CODE END TIM11_Init 0 */ TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM11_Init 1 */ /* USER CODE END TIM11_Init 1 */ htim11.Instance = TIM11; htim11.Init.Prescaler = 83; htim11.Init.CounterMode = TIM_COUNTERMODE_UP; htim11.Init.Period = 999; htim11.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim11.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim11) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim11) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim11, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } __HAL_TIM_DISABLE_OCxPRELOAD(&htim11, TIM_CHANNEL_1); /* USER CODE BEGIN TIM11_Init 2 */ /* USER CODE END TIM11_Init 2 */ HAL_TIM_MspPostInit(&htim11); } /** * @brief TIM13 Initialization Function * @param None * @retval None */ static void MX_TIM13_Init(void) { /* USER CODE BEGIN TIM13_Init 0 */ /* USER CODE END TIM13_Init 0 */ TIM_OC_InitTypeDef sConfigOC = {0}; /* USER CODE BEGIN TIM13_Init 1 */ /* USER CODE END TIM13_Init 1 */ htim13.Instance = TIM13; htim13.Init.Prescaler = 83; htim13.Init.CounterMode = TIM_COUNTERMODE_UP; htim13.Init.Period = 999; htim13.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; htim13.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; if (HAL_TIM_Base_Init(&htim13) != HAL_OK) { Error_Handler(); } if (HAL_TIM_PWM_Init(&htim13) != HAL_OK) { Error_Handler(); } sConfigOC.OCMode = TIM_OCMODE_PWM1; sConfigOC.Pulse = 0; sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH; sConfigOC.OCFastMode = TIM_OCFAST_DISABLE; if (HAL_TIM_PWM_ConfigChannel(&htim13, &sConfigOC, TIM_CHANNEL_1) != HAL_OK) { Error_Handler(); } __HAL_TIM_DISABLE_OCxPRELOAD(&htim13, TIM_CHANNEL_1); /* USER CODE BEGIN TIM13_Init 2 */ /* USER CODE END TIM13_Init 2 */ HAL_TIM_MspPostInit(&htim13); } /** * @brief USART1 Initialization Function * @param None * @retval None */ static void MX_USART1_UART_Init(void) { /* USER CODE BEGIN USART1_Init 0 */ /* USER CODE END USART1_Init 0 */ /* USER CODE BEGIN USART1_Init 1 */ /* USER CODE END USART1_Init 1 */ huart1.Instance = USART1; huart1.Init.BaudRate = 9600; huart1.Init.WordLength = UART_WORDLENGTH_8B; huart1.Init.StopBits = UART_STOPBITS_1; huart1.Init.Parity = UART_PARITY_NONE; huart1.Init.Mode = UART_MODE_TX_RX; huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart1.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart1) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART1_Init 2 */ /* USER CODE END USART1_Init 2 */ } /** * @brief USART2 Initialization Function * @param None * @retval None */ static void MX_USART2_UART_Init(void) { /* USER CODE BEGIN USART2_Init 0 */ /* USER CODE END USART2_Init 0 */ /* USER CODE BEGIN USART2_Init 1 */ /* USER CODE END USART2_Init 1 */ huart2.Instance = USART2; huart2.Init.BaudRate = 9600; huart2.Init.WordLength = UART_WORDLENGTH_8B; huart2.Init.StopBits = UART_STOPBITS_1; huart2.Init.Parity = UART_PARITY_NONE; huart2.Init.Mode = UART_MODE_TX_RX; huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE; huart2.Init.OverSampling = UART_OVERSAMPLING_16; if (HAL_UART_Init(&huart2) != HAL_OK) { Error_Handler(); } /* USER CODE BEGIN USART2_Init 2 */ /* USER CODE END USART2_Init 2 */ } /** * Enable DMA controller clock */ static void MX_DMA_Init(void) { /* DMA controller clock enable */ __HAL_RCC_DMA2_CLK_ENABLE(); /* DMA interrupt init */ /* DMA2_Stream3_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn); /* DMA2_Stream6_IRQn interrupt configuration */ HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 5, 0); HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn); } /** * @brief GPIO Initialization Function * @param None * @retval None */ static void MX_GPIO_Init(void) { GPIO_InitTypeDef GPIO_InitStruct = {0}; /* GPIO Ports Clock Enable */ __HAL_RCC_GPIOE_CLK_ENABLE(); __HAL_RCC_GPIOC_CLK_ENABLE(); __HAL_RCC_GPIOF_CLK_ENABLE(); __HAL_RCC_GPIOH_CLK_ENABLE(); __HAL_RCC_GPIOA_CLK_ENABLE(); __HAL_RCC_GPIOB_CLK_ENABLE(); __HAL_RCC_GPIOG_CLK_ENABLE(); __HAL_RCC_GPIOD_CLK_ENABLE(); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOE, GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_0|GPIO_PIN_1, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOF, LED_HARDFAULT_Pin|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1|CAMERA_RESET_Pin, GPIO_PIN_RESET); /*Configure GPIO pin Output Level */ HAL_GPIO_WritePin(GPIOG, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3 |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7 |LCD_RESET_Pin, GPIO_PIN_RESET); /*Configure GPIO pins : PE2 PE3 PE0 PE1 */ GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_0|GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOE, &GPIO_InitStruct); /*Configure GPIO pin : SDIO_FAKE_CS_Pin */ GPIO_InitStruct.Pin = SDIO_FAKE_CS_Pin; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(SDIO_FAKE_CS_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : LED_HARDFAULT_Pin PF13 PF14 PF15 */ GPIO_InitStruct.Pin = LED_HARDFAULT_Pin|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOF, &GPIO_InitStruct); /*Configure GPIO pin : PC1 */ GPIO_InitStruct.Pin = GPIO_PIN_1; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOC, &GPIO_InitStruct); /*Configure GPIO pin : CAMERA_RESET_Pin */ GPIO_InitStruct.Pin = CAMERA_RESET_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_PULLUP; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(CAMERA_RESET_GPIO_Port, &GPIO_InitStruct); /*Configure GPIO pins : PB0 PB1 PB2 PB10 PB11 PB12 PB13 PB14 PB15 PB3 PB4 */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10 |GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14 |GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4; GPIO_InitStruct.Mode = GPIO_MODE_INPUT; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); /*Configure GPIO pins : PG0 PG1 PG2 PG3 PG4 PG5 PG6 PG7 LCD_RESET_Pin */ GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3 |GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7 |LCD_RESET_Pin; GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP; GPIO_InitStruct.Pull = GPIO_NOPULL; GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW; HAL_GPIO_Init(GPIOG, &GPIO_InitStruct); } /* FSMC initialization function */ static void MX_FSMC_Init(void) { /* USER CODE BEGIN FSMC_Init 0 */ /* USER CODE END FSMC_Init 0 */ FSMC_NORSRAM_TimingTypeDef Timing = {0}; /* USER CODE BEGIN FSMC_Init 1 */ /* USER CODE END FSMC_Init 1 */ /** Perform the SRAM1 memory initialization sequence */ hsram1.Instance = FSMC_NORSRAM_DEVICE; hsram1.Extended = FSMC_NORSRAM_EXTENDED_DEVICE; /* hsram1.Init */ hsram1.Init.NSBank = FSMC_NORSRAM_BANK4; hsram1.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE; hsram1.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM; hsram1.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_8; hsram1.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE; hsram1.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW; hsram1.Init.WrapMode = FSMC_WRAP_MODE_DISABLE; hsram1.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS; hsram1.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE; hsram1.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE; hsram1.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE; hsram1.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE; hsram1.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE; hsram1.Init.PageSize = FSMC_PAGE_SIZE_NONE; /* Timing */ Timing.AddressSetupTime = 5; Timing.AddressHoldTime = 15; Timing.DataSetupTime = 4; Timing.BusTurnAroundDuration = 1; Timing.CLKDivision = 16; Timing.DataLatency = 17; Timing.AccessMode = FSMC_ACCESS_MODE_A; /* ExtTiming */ if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK) { Error_Handler( ); } /* USER CODE BEGIN FSMC_Init 2 */ /* USER CODE END FSMC_Init 2 */ } /* USER CODE BEGIN 4 */ /* USER CODE END 4 */ /* USER CODE BEGIN Header_StartDefaultTask */ /** * @brief Function implementing the defaultTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartDefaultTask */ void StartDefaultTask(void const * argument) { /* USER CODE BEGIN 5 */ /* Infinite loop */ for(;;) { osDelay(1); } /* USER CODE END 5 */ } /* USER CODE BEGIN Header_StartProcessTask */ /** * @brief Function implementing the processTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartProcessTask */ void StartProcessTask(void const * argument) { /* USER CODE BEGIN StartProcessTask */ TSData tsPos; KbdData pKbdData; if (xSemaphoreTake(tftSemMutexHandle,( TickType_t ) 10) == pdTRUE) { GPIOF->BSRR = (1 << 9); tsPos.x = 0; tsPos.y = 0; pKbdData.pkeyativo = 0; pKbdData.pshowkeyontouch = 0; pKbdData.vkeyrep = 0; xQueueOverwrite(kbdDataQueueHandle, &pKbdData); xQueueOverwrite(tftTouchTypeQueueHandle, &pZero); xQueueOverwrite(tftTouchPosQueueHandle, &tsPos); xQueueOverwrite(tftUpdDTQueueHandle, &pZero); xQueueOverwrite(tftUpdWinQueueHandle, &pZero); xQueueOverwrite(tftUpdGuiQueueHandle, &pZero); mmsj800_init(); xSemaphoreGive(tftSemMutexHandle); } /* Infinite loop */ for(;;) { mmsj800_process(); osDelay(1); } /* USER CODE END StartProcessTask */ } /* USER CODE BEGIN Header_StartToushScreenTask */ /** * @brief Function implementing the touchScreenTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartToushScreenTask */ void StartToushScreenTask(void const * argument) { /* USER CODE BEGIN StartToushScreenTask */ char pTouch = 0; /* Infinite loop */ for(;;) { if (xSemaphoreTake(tftSemMutexHandle,( TickType_t ) 10) == pdTRUE) { xQueuePeek(tftTouchTypeQueueHandle, &pTouch, portMAX_DELAY ); mmsj800_touch(pTouch); xSemaphoreGive(tftSemMutexHandle); } osDelay(1); } /* USER CODE END StartToushScreenTask */ } /* USER CODE BEGIN Header_StartLcdTask */ /** * @brief Function implementing the lcdTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartLcdTask */ void StartLcdTask(void const * argument) { /* USER CODE BEGIN StartLcdTask */ /* PS: usar xQueuePeek, pois essas queues devem ficar na memoria */ xQueueOverwrite(tftUpdDTQueueHandle, &pHum); xQueueOverwrite(tftUpdWinQueueHandle, &pZero); xQueueOverwrite(tftUpdGuiQueueHandle, &pZero); /* Infinite loop */ for(;;) { if (xSemaphoreTake(tftSemMutexHandle, (TickType_t ) 10) == pdTRUE) { mmsj800_update(); xSemaphoreGive(tftSemMutexHandle); } osDelay(1); } /* USER CODE END StartLcdTask */ } /* USER CODE BEGIN Header_StartKeyboardTchTask */ /** * @brief Function implementing the keyboardTchTask thread. * @param argument: Not used * @retval None */ /* USER CODE END Header_StartKeyboardTchTask */ void StartKeyboardTchTask(void const * argument) { /* USER CODE BEGIN StartKeyboardTchTask */ KbdData pKbdData; /* PS: usar xQueuePeek, pois essas queues devem ficar na memoria */ pKbdData.pshowkeyontouch = 0x00; pKbdData.pkeyativo = 0x00; pKbdData.pShow = 0x00; pKbdData.pHide = 0x00; xQueueOverwrite(kbdDataQueueHandle, &pKbdData); /* Infinite loop */ for(;;) { if (xSemaphoreTake(tftSemMutexHandle,(TickType_t ) 10) == pdTRUE) { xQueuePeek(kbdDataQueueHandle, &pKbdData, portMAX_DELAY); if (pKbdData.pShow) ShowKeyboard(); else if (pKbdData.pHide) HideKeyboard(); xSemaphoreGive(tftSemMutexHandle); } osDelay(1); } /* USER CODE END StartKeyboardTchTask */ } /** * @brief Period elapsed callback in non blocking mode * @note This function is called when TIM14 interrupt took place, inside * HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment * a global variable "uwTick" used as application time base. * @param htim : TIM handle * @retval None */ void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) { /* USER CODE BEGIN Callback 0 */ if (htim->Instance == TIM2) { } /* USER CODE END Callback 0 */ if (htim->Instance == TIM14) { HAL_IncTick(); } /* USER CODE BEGIN Callback 1 */ /* USER CODE END Callback 1 */ } /** * @brief This function is executed in case of error occurrence. * @retval None */ void Error_Handler(void) { /* USER CODE BEGIN Error_Handler_Debug */ /* User can add his own implementation to report the HAL error return state */ /* USER CODE END Error_Handler_Debug */ } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* USER CODE BEGIN 6 */ /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* USER CODE END 6 */ } #endif /* USE_FULL_ASSERT */