/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
*
© Copyright (c) 2020 STMicroelectronics.
* All rights reserved.
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
* Motor Shield - STM32F407ZTG6
* ----------------------------
* /OE - 7 - PG2 OE
* RCK - 12 - PG4 latchpin
* SCK - 4 - PG5 clockpin
* SER - 8 - PG3 datapin
* M1PWM - 11 - x
* M2PWM - 3 - x
* M3PWM - 6 - PF8
* M4PWM - 5 - PF7
* CLR - 2 - PG6
* ----------------------------
*
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "cmsis_os.h"
#include "fatfs.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include "mmsj800.h"
#include "stm32fxxx_hal.h"
#include "tm_stm32_delay.h"
#include "tm_stm32_mpu6050.h"
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
#define _INIT_RTC_DATE_TIME_ 1
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc3;
I2C_HandleTypeDef hi2c1;
I2C_HandleTypeDef hi2c2;
RTC_HandleTypeDef hrtc;
SD_HandleTypeDef hsd;
DMA_HandleTypeDef hdma_sdio_rx;
DMA_HandleTypeDef hdma_sdio_tx;
TIM_HandleTypeDef htim1;
TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim11;
TIM_HandleTypeDef htim13;
UART_HandleTypeDef huart1;
UART_HandleTypeDef huart2;
SRAM_HandleTypeDef hsram1;
osThreadId defaultTaskHandle;
osThreadId processTaskHandle;
osThreadId touchScreenTaskHandle;
osThreadId lcdTaskHandle;
osThreadId keyboardTchTaskHandle;
osMessageQId tftTouchTypeQueueHandle;
osMessageQId tftTouchPosQueueHandle;
osMessageQId tftUpdDTQueueHandle;
osMessageQId tftUpdWinQueueHandle;
osMessageQId kbdDataQueueHandle;
osMessageQId tftUpdGuiQueueHandle;
osMutexId tftSemMutexHandle;
osMutexId rtcSemMutexHandle;
osMutexId uartSemMutexHandle;
/* USER CODE BEGIN PV */
char pZero = 0, pHum = 1;
osPoolId MpoolMessageHandle;
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_DMA_Init(void);
static void MX_USART1_UART_Init(void);
static void MX_USART2_UART_Init(void);
static void MX_RTC_Init(void);
static void MX_TIM1_Init(void);
static void MX_ADC3_Init(void);
static void MX_FSMC_Init(void);
static void MX_I2C2_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM11_Init(void);
static void MX_TIM13_Init(void);
static void MX_SDIO_SD_Init(void);
static void MX_I2C1_Init(void);
void StartDefaultTask(void const * argument);
void StartProcessTask(void const * argument);
void StartToushScreenTask(void const * argument);
void StartLcdTask(void const * argument);
void StartKeyboardTchTask(void const * argument);
/* USER CODE BEGIN PFP */
char fMounted;
unsigned char vMotor[8] = {0,0,0,0,0,0,0,0};
//TM_MPU6050_t MPU6050;
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_DMA_Init();
MX_USART1_UART_Init();
MX_USART2_UART_Init();
MX_RTC_Init();
MX_TIM1_Init();
MX_ADC3_Init();
MX_FSMC_Init();
MX_I2C2_Init();
MX_TIM2_Init();
MX_TIM11_Init();
MX_TIM13_Init();
MX_SDIO_SD_Init();
MX_FATFS_Init();
MX_I2C1_Init();
/* USER CODE BEGIN 2 */
HAL_TIM_Base_Start(&htim1);
HAL_TIM_Base_Start(&htim2);
/* TM_RCC_InitSystem();*/
/* if (TM_MPU6050_Init(&MPU6050, TM_MPU6050_Device_0, TM_MPU6050_Accelerometer_8G, TM_MPU6050_Gyroscope_250s) == TM_MPU6050_Result_Ok) {
TM_MPU6050_ReadAll(&MPU6050);
}*/
/* USER CODE END 2 */
/* Create the mutex(es) */
/* definition and creation of tftSemMutex */
osMutexDef(tftSemMutex);
tftSemMutexHandle = osMutexCreate(osMutex(tftSemMutex));
/* definition and creation of rtcSemMutex */
osMutexDef(rtcSemMutex);
rtcSemMutexHandle = osMutexCreate(osMutex(rtcSemMutex));
/* definition and creation of uartSemMutex */
osMutexDef(uartSemMutex);
uartSemMutexHandle = osMutexCreate(osMutex(uartSemMutex));
/* USER CODE BEGIN RTOS_MUTEX */
/* add mutexes, ... */
/* USER CODE END RTOS_MUTEX */
/* USER CODE BEGIN RTOS_SEMAPHORES */
/* add semaphores, ... */
/* USER CODE END RTOS_SEMAPHORES */
/* USER CODE BEGIN RTOS_TIMERS */
/* start timers, add new ones, ... */
/* USER CODE END RTOS_TIMERS */
/* Create the queue(s) */
/* definition and creation of tftTouchTypeQueue */
osMessageQDef(tftTouchTypeQueue, 1, char);
tftTouchTypeQueueHandle = osMessageCreate(osMessageQ(tftTouchTypeQueue), NULL);
/* definition and creation of tftTouchPosQueue */
osMessageQDef(tftTouchPosQueue, 1, TSData);
tftTouchPosQueueHandle = osMessageCreate(osMessageQ(tftTouchPosQueue), NULL);
/* definition and creation of tftUpdDTQueue */
osMessageQDef(tftUpdDTQueue, 1, char);
tftUpdDTQueueHandle = osMessageCreate(osMessageQ(tftUpdDTQueue), NULL);
/* definition and creation of tftUpdWinQueue */
osMessageQDef(tftUpdWinQueue, 1, char);
tftUpdWinQueueHandle = osMessageCreate(osMessageQ(tftUpdWinQueue), NULL);
/* definition and creation of kbdDataQueue */
osMessageQDef(kbdDataQueue, 1, KbdData);
kbdDataQueueHandle = osMessageCreate(osMessageQ(kbdDataQueue), NULL);
/* definition and creation of tftUpdGuiQueue */
osMessageQDef(tftUpdGuiQueue, 1, char);
tftUpdGuiQueueHandle = osMessageCreate(osMessageQ(tftUpdGuiQueue), NULL);
/* USER CODE BEGIN RTOS_QUEUES */
/* USER CODE END RTOS_QUEUES */
/* Create the thread(s) */
/* definition and creation of defaultTask */
osThreadDef(defaultTask, StartDefaultTask, osPriorityBelowNormal, 0, 128);
defaultTaskHandle = osThreadCreate(osThread(defaultTask), NULL);
/* definition and creation of processTask */
osThreadDef(processTask, StartProcessTask, osPriorityAboveNormal, 0, 8192);
processTaskHandle = osThreadCreate(osThread(processTask), NULL);
/* definition and creation of touchScreenTask */
osThreadDef(touchScreenTask, StartToushScreenTask, osPriorityNormal, 0, 512);
touchScreenTaskHandle = osThreadCreate(osThread(touchScreenTask), NULL);
/* definition and creation of lcdTask */
osThreadDef(lcdTask, StartLcdTask, osPriorityNormal, 0, 256);
lcdTaskHandle = osThreadCreate(osThread(lcdTask), NULL);
/* definition and creation of keyboardTchTask */
osThreadDef(keyboardTchTask, StartKeyboardTchTask, osPriorityNormal, 0, 256);
keyboardTchTaskHandle = osThreadCreate(osThread(keyboardTchTask), NULL);
/* USER CODE BEGIN RTOS_THREADS */
/* add threads, ... */
/* USER CODE END RTOS_THREADS */
/* Start scheduler */
osKernelStart();
/* We should never get here as control is now taken by the scheduler */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
__HAL_RCC_PWR_CLK_ENABLE();
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/** Initializes the RCC Oscillators according to the specified parameters
* in the RCC_OscInitTypeDef structure.
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSE;
RCC_OscInitStruct.LSEState = RCC_LSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
RCC_OscInitStruct.PLL.PLLM = 16;
RCC_OscInitStruct.PLL.PLLN = 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV4;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC3 Initialization Function
* @param None
* @retval None
*/
static void MX_ADC3_Init(void)
{
/* USER CODE BEGIN ADC3_Init 0 */
/* USER CODE END ADC3_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC3_Init 1 */
/* USER CODE END ADC3_Init 1 */
/** Configure the global features of the ADC (Clock, Resolution, Data Alignment and number of conversion)
*/
hadc3.Instance = ADC3;
hadc3.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV8;
hadc3.Init.Resolution = ADC_RESOLUTION_10B;
hadc3.Init.ScanConvMode = DISABLE;
hadc3.Init.ContinuousConvMode = DISABLE;
hadc3.Init.DiscontinuousConvMode = DISABLE;
hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc3.Init.DataAlign = ADC_DATAALIGN_RIGHT;
hadc3.Init.NbrOfConversion = 1;
hadc3.Init.DMAContinuousRequests = DISABLE;
hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
if (HAL_ADC_Init(&hadc3) != HAL_OK)
{
Error_Handler();
}
/** Configure for the selected ADC regular channel its corresponding rank in the sequencer and its sample time.
*/
sConfig.Channel = ADC_CHANNEL_4;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC3_Init 2 */
sConfig.Rank = 0;
if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE END ADC3_Init 2 */
}
/**
* @brief I2C1 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C1_Init(void)
{
/* USER CODE BEGIN I2C1_Init 0 */
/* USER CODE END I2C1_Init 0 */
/* USER CODE BEGIN I2C1_Init 1 */
/* USER CODE END I2C1_Init 1 */
hi2c1.Instance = I2C1;
hi2c1.Init.ClockSpeed = 100000;
hi2c1.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c1.Init.OwnAddress1 = 0;
hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c1.Init.OwnAddress2 = 0;
hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C1_Init 2 */
/* USER CODE END I2C1_Init 2 */
}
/**
* @brief I2C2 Initialization Function
* @param None
* @retval None
*/
static void MX_I2C2_Init(void)
{
/* USER CODE BEGIN I2C2_Init 0 */
/* USER CODE END I2C2_Init 0 */
/* USER CODE BEGIN I2C2_Init 1 */
/* USER CODE END I2C2_Init 1 */
hi2c2.Instance = I2C2;
hi2c2.Init.ClockSpeed = 100000;
hi2c2.Init.DutyCycle = I2C_DUTYCYCLE_2;
hi2c2.Init.OwnAddress1 = 0;
hi2c2.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
hi2c2.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
hi2c2.Init.OwnAddress2 = 0;
hi2c2.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
hi2c2.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
if (HAL_I2C_Init(&hi2c2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN I2C2_Init 2 */
/* USER CODE END I2C2_Init 2 */
}
/**
* @brief RTC Initialization Function
* @param None
* @retval None
*/
static void MX_RTC_Init(void)
{
/* USER CODE BEGIN RTC_Init 0 */
/* USER CODE END RTC_Init 0 */
RTC_TimeTypeDef sTime = {0};
RTC_DateTypeDef sDate = {0};
/* USER CODE BEGIN RTC_Init 1 */
/* USER CODE END RTC_Init 1 */
/** Initialize RTC Only
*/
hrtc.Instance = RTC;
hrtc.Init.HourFormat = RTC_HOURFORMAT_24;
hrtc.Init.AsynchPrediv = 127;
hrtc.Init.SynchPrediv = 255;
hrtc.Init.OutPut = RTC_OUTPUT_DISABLE;
hrtc.Init.OutPutPolarity = RTC_OUTPUT_POLARITY_HIGH;
hrtc.Init.OutPutType = RTC_OUTPUT_TYPE_OPENDRAIN;
if (HAL_RTC_Init(&hrtc) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN Check_RTC_BKUP */
if(HAL_RTCEx_BKUPRead(&hrtc, RTC_BKP_DR0) != 0x32F2)
{
#if _INIT_RTC_DATE_TIME_
/* USER CODE END Check_RTC_BKUP */
/** Initialize RTC and set the Time and Date
*/
sTime.Hours = 0;
sTime.Minutes = 0;
sTime.Seconds = 0;
sTime.DayLightSaving = RTC_DAYLIGHTSAVING_NONE;
sTime.StoreOperation = RTC_STOREOPERATION_RESET;
if (HAL_RTC_SetTime(&hrtc, &sTime, RTC_FORMAT_BIN) != HAL_OK)
{
Error_Handler();
}
sDate.WeekDay = RTC_WEEKDAY_MONDAY;
sDate.Month = RTC_MONTH_MAY;
sDate.Date = 8;
sDate.Year = 20;
if (HAL_RTC_SetDate(&hrtc, &sDate, RTC_FORMAT_BIN) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN RTC_Init 2 */
#endif
HAL_RTCEx_BKUPWrite(&hrtc,RTC_BKP_DR0,0x32F2);
}
/* USER CODE END RTC_Init 2 */
}
/**
* @brief SDIO Initialization Function
* @param None
* @retval None
*/
static void MX_SDIO_SD_Init(void)
{
/* USER CODE BEGIN SDIO_Init 0 */
/* USER CODE END SDIO_Init 0 */
/* USER CODE BEGIN SDIO_Init 1 */
/* USER CODE END SDIO_Init 1 */
hsd.Instance = SDIO;
hsd.Init.ClockEdge = SDIO_CLOCK_EDGE_RISING;
hsd.Init.ClockBypass = SDIO_CLOCK_BYPASS_DISABLE;
hsd.Init.ClockPowerSave = SDIO_CLOCK_POWER_SAVE_DISABLE;
hsd.Init.BusWide = SDIO_BUS_WIDE_1B;
hsd.Init.HardwareFlowControl = SDIO_HARDWARE_FLOW_CONTROL_DISABLE;
hsd.Init.ClockDiv = 4;
/* USER CODE BEGIN SDIO_Init 2 */
/* USER CODE END SDIO_Init 2 */
}
/**
* @brief TIM1 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM1_Init(void)
{
/* USER CODE BEGIN TIM1_Init 0 */
/* USER CODE END TIM1_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM1_Init 1 */
/* USER CODE END TIM1_Init 1 */
htim1.Instance = TIM1;
htim1.Init.Prescaler = 84-1;
htim1.Init.CounterMode = TIM_COUNTERMODE_UP;
htim1.Init.Period = 0xffff-1;
htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim1.Init.RepetitionCounter = 0;
htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim1) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim1, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim1, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM1_Init 2 */
/* USER CODE END TIM1_Init 2 */
}
/**
* @brief TIM2 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM2_Init(void)
{
/* USER CODE BEGIN TIM2_Init 0 */
/* USER CODE END TIM2_Init 0 */
TIM_ClockConfigTypeDef sClockSourceConfig = {0};
TIM_MasterConfigTypeDef sMasterConfig = {0};
/* USER CODE BEGIN TIM2_Init 1 */
/* USER CODE END TIM2_Init 1 */
htim2.Instance = TIM2;
htim2.Init.Prescaler = 83;
htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
htim2.Init.Period = 63999;
htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_ENABLE;
if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
{
Error_Handler();
}
sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
{
Error_Handler();
}
sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN TIM2_Init 2 */
/* USER CODE END TIM2_Init 2 */
}
/**
* @brief TIM11 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM11_Init(void)
{
/* USER CODE BEGIN TIM11_Init 0 */
/* USER CODE END TIM11_Init 0 */
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM11_Init 1 */
/* USER CODE END TIM11_Init 1 */
htim11.Instance = TIM11;
htim11.Init.Prescaler = 83;
htim11.Init.CounterMode = TIM_COUNTERMODE_UP;
htim11.Init.Period = 999;
htim11.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim11.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim11) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim11) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim11, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
__HAL_TIM_DISABLE_OCxPRELOAD(&htim11, TIM_CHANNEL_1);
/* USER CODE BEGIN TIM11_Init 2 */
/* USER CODE END TIM11_Init 2 */
HAL_TIM_MspPostInit(&htim11);
}
/**
* @brief TIM13 Initialization Function
* @param None
* @retval None
*/
static void MX_TIM13_Init(void)
{
/* USER CODE BEGIN TIM13_Init 0 */
/* USER CODE END TIM13_Init 0 */
TIM_OC_InitTypeDef sConfigOC = {0};
/* USER CODE BEGIN TIM13_Init 1 */
/* USER CODE END TIM13_Init 1 */
htim13.Instance = TIM13;
htim13.Init.Prescaler = 83;
htim13.Init.CounterMode = TIM_COUNTERMODE_UP;
htim13.Init.Period = 999;
htim13.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
htim13.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
if (HAL_TIM_Base_Init(&htim13) != HAL_OK)
{
Error_Handler();
}
if (HAL_TIM_PWM_Init(&htim13) != HAL_OK)
{
Error_Handler();
}
sConfigOC.OCMode = TIM_OCMODE_PWM1;
sConfigOC.Pulse = 0;
sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
if (HAL_TIM_PWM_ConfigChannel(&htim13, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
{
Error_Handler();
}
__HAL_TIM_DISABLE_OCxPRELOAD(&htim13, TIM_CHANNEL_1);
/* USER CODE BEGIN TIM13_Init 2 */
/* USER CODE END TIM13_Init 2 */
HAL_TIM_MspPostInit(&htim13);
}
/**
* @brief USART1 Initialization Function
* @param None
* @retval None
*/
static void MX_USART1_UART_Init(void)
{
/* USER CODE BEGIN USART1_Init 0 */
/* USER CODE END USART1_Init 0 */
/* USER CODE BEGIN USART1_Init 1 */
/* USER CODE END USART1_Init 1 */
huart1.Instance = USART1;
huart1.Init.BaudRate = 9600;
huart1.Init.WordLength = UART_WORDLENGTH_8B;
huart1.Init.StopBits = UART_STOPBITS_1;
huart1.Init.Parity = UART_PARITY_NONE;
huart1.Init.Mode = UART_MODE_TX_RX;
huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart1.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART1_Init 2 */
/* USER CODE END USART1_Init 2 */
}
/**
* @brief USART2 Initialization Function
* @param None
* @retval None
*/
static void MX_USART2_UART_Init(void)
{
/* USER CODE BEGIN USART2_Init 0 */
/* USER CODE END USART2_Init 0 */
/* USER CODE BEGIN USART2_Init 1 */
/* USER CODE END USART2_Init 1 */
huart2.Instance = USART2;
huart2.Init.BaudRate = 9600;
huart2.Init.WordLength = UART_WORDLENGTH_8B;
huart2.Init.StopBits = UART_STOPBITS_1;
huart2.Init.Parity = UART_PARITY_NONE;
huart2.Init.Mode = UART_MODE_TX_RX;
huart2.Init.HwFlowCtl = UART_HWCONTROL_NONE;
huart2.Init.OverSampling = UART_OVERSAMPLING_16;
if (HAL_UART_Init(&huart2) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN USART2_Init 2 */
/* USER CODE END USART2_Init 2 */
}
/**
* Enable DMA controller clock
*/
static void MX_DMA_Init(void)
{
/* DMA controller clock enable */
__HAL_RCC_DMA2_CLK_ENABLE();
/* DMA interrupt init */
/* DMA2_Stream3_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream3_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream3_IRQn);
/* DMA2_Stream6_IRQn interrupt configuration */
HAL_NVIC_SetPriority(DMA2_Stream6_IRQn, 5, 0);
HAL_NVIC_EnableIRQ(DMA2_Stream6_IRQn);
}
/**
* @brief GPIO Initialization Function
* @param None
* @retval None
*/
static void MX_GPIO_Init(void)
{
GPIO_InitTypeDef GPIO_InitStruct = {0};
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOD_CLK_ENABLE();
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOE, GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_0|GPIO_PIN_1, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOF, LED_HARDFAULT_Pin|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOC, GPIO_PIN_1|CAMERA_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pin Output Level */
HAL_GPIO_WritePin(GPIOG, GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7
|LCD_RESET_Pin, GPIO_PIN_RESET);
/*Configure GPIO pins : PE2 PE3 PE0 PE1 */
GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_3|GPIO_PIN_0|GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);
/*Configure GPIO pin : SDIO_FAKE_CS_Pin */
GPIO_InitStruct.Pin = SDIO_FAKE_CS_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(SDIO_FAKE_CS_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : LED_HARDFAULT_Pin PF13 PF14 PF15 */
GPIO_InitStruct.Pin = LED_HARDFAULT_Pin|GPIO_PIN_13|GPIO_PIN_14|GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);
/*Configure GPIO pin : PC1 */
GPIO_InitStruct.Pin = GPIO_PIN_1;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);
/*Configure GPIO pin : CAMERA_RESET_Pin */
GPIO_InitStruct.Pin = CAMERA_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(CAMERA_RESET_GPIO_Port, &GPIO_InitStruct);
/*Configure GPIO pins : PB0 PB1 PB2 PB10
PB11 PB12 PB13 PB14
PB15 PB3 PB4 */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_10
|GPIO_PIN_11|GPIO_PIN_12|GPIO_PIN_13|GPIO_PIN_14
|GPIO_PIN_15|GPIO_PIN_3|GPIO_PIN_4;
GPIO_InitStruct.Mode = GPIO_MODE_INPUT;
GPIO_InitStruct.Pull = GPIO_NOPULL;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
/*Configure GPIO pins : PG0 PG1 PG2 PG3
PG4 PG5 PG6 PG7
LCD_RESET_Pin */
GPIO_InitStruct.Pin = GPIO_PIN_0|GPIO_PIN_1|GPIO_PIN_2|GPIO_PIN_3
|GPIO_PIN_4|GPIO_PIN_5|GPIO_PIN_6|GPIO_PIN_7
|LCD_RESET_Pin;
GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
GPIO_InitStruct.Pull = GPIO_NOPULL;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);
}
/* FSMC initialization function */
static void MX_FSMC_Init(void)
{
/* USER CODE BEGIN FSMC_Init 0 */
/* USER CODE END FSMC_Init 0 */
FSMC_NORSRAM_TimingTypeDef Timing = {0};
/* USER CODE BEGIN FSMC_Init 1 */
/* USER CODE END FSMC_Init 1 */
/** Perform the SRAM1 memory initialization sequence
*/
hsram1.Instance = FSMC_NORSRAM_DEVICE;
hsram1.Extended = FSMC_NORSRAM_EXTENDED_DEVICE;
/* hsram1.Init */
hsram1.Init.NSBank = FSMC_NORSRAM_BANK4;
hsram1.Init.DataAddressMux = FSMC_DATA_ADDRESS_MUX_DISABLE;
hsram1.Init.MemoryType = FSMC_MEMORY_TYPE_SRAM;
hsram1.Init.MemoryDataWidth = FSMC_NORSRAM_MEM_BUS_WIDTH_8;
hsram1.Init.BurstAccessMode = FSMC_BURST_ACCESS_MODE_DISABLE;
hsram1.Init.WaitSignalPolarity = FSMC_WAIT_SIGNAL_POLARITY_LOW;
hsram1.Init.WrapMode = FSMC_WRAP_MODE_DISABLE;
hsram1.Init.WaitSignalActive = FSMC_WAIT_TIMING_BEFORE_WS;
hsram1.Init.WriteOperation = FSMC_WRITE_OPERATION_ENABLE;
hsram1.Init.WaitSignal = FSMC_WAIT_SIGNAL_DISABLE;
hsram1.Init.ExtendedMode = FSMC_EXTENDED_MODE_DISABLE;
hsram1.Init.AsynchronousWait = FSMC_ASYNCHRONOUS_WAIT_DISABLE;
hsram1.Init.WriteBurst = FSMC_WRITE_BURST_DISABLE;
hsram1.Init.PageSize = FSMC_PAGE_SIZE_NONE;
/* Timing */
Timing.AddressSetupTime = 5;
Timing.AddressHoldTime = 15;
Timing.DataSetupTime = 4;
Timing.BusTurnAroundDuration = 1;
Timing.CLKDivision = 16;
Timing.DataLatency = 17;
Timing.AccessMode = FSMC_ACCESS_MODE_A;
/* ExtTiming */
if (HAL_SRAM_Init(&hsram1, &Timing, NULL) != HAL_OK)
{
Error_Handler( );
}
/* USER CODE BEGIN FSMC_Init 2 */
/* USER CODE END FSMC_Init 2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/* USER CODE BEGIN Header_StartDefaultTask */
/**
* @brief Function implementing the defaultTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartDefaultTask */
void StartDefaultTask(void const * argument)
{
/* USER CODE BEGIN 5 */
/* Infinite loop */
for(;;)
{
osDelay(1);
}
/* USER CODE END 5 */
}
/* USER CODE BEGIN Header_StartProcessTask */
/**
* @brief Function implementing the processTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartProcessTask */
void StartProcessTask(void const * argument)
{
/* USER CODE BEGIN StartProcessTask */
TSData tsPos;
KbdData pKbdData;
if (xSemaphoreTake(tftSemMutexHandle,( TickType_t ) 10) == pdTRUE)
{
GPIOF->BSRR = (1 << 9);
tsPos.x = 0;
tsPos.y = 0;
pKbdData.pkeyativo = 0;
pKbdData.pshowkeyontouch = 0;
pKbdData.vkeyrep = 0;
xQueueOverwrite(kbdDataQueueHandle, &pKbdData);
xQueueOverwrite(tftTouchTypeQueueHandle, &pZero);
xQueueOverwrite(tftTouchPosQueueHandle, &tsPos);
xQueueOverwrite(tftUpdDTQueueHandle, &pZero);
xQueueOverwrite(tftUpdWinQueueHandle, &pZero);
xQueueOverwrite(tftUpdGuiQueueHandle, &pZero);
mmsj800_init();
xSemaphoreGive(tftSemMutexHandle);
}
/* Infinite loop */
for(;;)
{
mmsj800_process();
osDelay(1);
}
/* USER CODE END StartProcessTask */
}
/* USER CODE BEGIN Header_StartToushScreenTask */
/**
* @brief Function implementing the touchScreenTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartToushScreenTask */
void StartToushScreenTask(void const * argument)
{
/* USER CODE BEGIN StartToushScreenTask */
char pTouch = 0;
/* Infinite loop */
for(;;)
{
if (xSemaphoreTake(tftSemMutexHandle,( TickType_t ) 10) == pdTRUE)
{
xQueuePeek(tftTouchTypeQueueHandle, &pTouch, portMAX_DELAY );
mmsj800_touch(pTouch);
xSemaphoreGive(tftSemMutexHandle);
}
osDelay(1);
}
/* USER CODE END StartToushScreenTask */
}
/* USER CODE BEGIN Header_StartLcdTask */
/**
* @brief Function implementing the lcdTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartLcdTask */
void StartLcdTask(void const * argument)
{
/* USER CODE BEGIN StartLcdTask */
/* PS: usar xQueuePeek, pois essas queues devem ficar na memoria */
xQueueOverwrite(tftUpdDTQueueHandle, &pHum);
xQueueOverwrite(tftUpdWinQueueHandle, &pZero);
xQueueOverwrite(tftUpdGuiQueueHandle, &pZero);
/* Infinite loop */
for(;;)
{
if (xSemaphoreTake(tftSemMutexHandle, (TickType_t ) 10) == pdTRUE)
{
mmsj800_update();
xSemaphoreGive(tftSemMutexHandle);
}
osDelay(1);
}
/* USER CODE END StartLcdTask */
}
/* USER CODE BEGIN Header_StartKeyboardTchTask */
/**
* @brief Function implementing the keyboardTchTask thread.
* @param argument: Not used
* @retval None
*/
/* USER CODE END Header_StartKeyboardTchTask */
void StartKeyboardTchTask(void const * argument)
{
/* USER CODE BEGIN StartKeyboardTchTask */
KbdData pKbdData;
/* PS: usar xQueuePeek, pois essas queues devem ficar na memoria */
pKbdData.pshowkeyontouch = 0x00;
pKbdData.pkeyativo = 0x00;
pKbdData.pShow = 0x00;
pKbdData.pHide = 0x00;
xQueueOverwrite(kbdDataQueueHandle, &pKbdData);
/* Infinite loop */
for(;;)
{
if (xSemaphoreTake(tftSemMutexHandle,(TickType_t ) 10) == pdTRUE)
{
xQueuePeek(kbdDataQueueHandle, &pKbdData, portMAX_DELAY);
if (pKbdData.pShow)
ShowKeyboard();
else if (pKbdData.pHide)
HideKeyboard();
xSemaphoreGive(tftSemMutexHandle);
}
osDelay(1);
}
/* USER CODE END StartKeyboardTchTask */
}
/**
* @brief Period elapsed callback in non blocking mode
* @note This function is called when TIM14 interrupt took place, inside
* HAL_TIM_IRQHandler(). It makes a direct call to HAL_IncTick() to increment
* a global variable "uwTick" used as application time base.
* @param htim : TIM handle
* @retval None
*/
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
/* USER CODE BEGIN Callback 0 */
if (htim->Instance == TIM2)
{
}
/* USER CODE END Callback 0 */
if (htim->Instance == TIM14) {
HAL_IncTick();
}
/* USER CODE BEGIN Callback 1 */
/* USER CODE END Callback 1 */
}
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */