/** ****************************************************************************** * @file Examples_MIX/SPI/SPI_FullDuplex_ComPolling/Src/main.c * @author MCD Application Team * @brief This sample code shows how to use STM32F4xx SPI HAL API to transmit * and receive a data buffer with a communication process based on * Polling transfer. * The communication is done using 2 Boards. ****************************************************************************** * @attention * * Copyright (c) 2017 STMicroelectronics. * All rights reserved. * * This software is licensed under terms that can be found in the LICENSE file * in the root directory of this software component. * If no LICENSE file comes with this software, it is provided AS-IS. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /** @addtogroup STM32F4xx_MIX_Examples * @{ */ /** @addtogroup SPI_FullDuplex_ComPolling * @{ */ /* Private typedef -----------------------------------------------------------*/ /* Private define ------------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Uncomment this line to use the board as master, if not it is used as slave */ //#define MASTER_BOARD /* Private variables ---------------------------------------------------------*/ /* SPI handler declaration */ SPI_HandleTypeDef SpiHandle; /* Buffer used for transmission */ uint8_t aTxBuffer[] = "STM32 SPI EXAMLPE"; __IO uint16_t ubNbDataToTransmit = BUFFERSIZE; __IO uint8_t ubTransmitIndex = 0; /* Buffer used for reception */ uint8_t aRxBuffer[BUFFERSIZE]; __IO uint16_t ubNbDataToReceive = BUFFERSIZE; __IO uint8_t ubReceiveIndex = 0; /* Private function prototypes -----------------------------------------------*/ static void SystemClock_Config(void); static void Error_Handler(void); static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength); /* Private functions ---------------------------------------------------------*/ /** * @brief Main program. * @param None * @retval None */ int main(void) { /* STM32F4xx HAL library initialization: - Configure the Flash prefetch - Systick timer is configured by default as source of time base, but user can eventually implement his proper time base source (a general purpose timer for example or other time source), keeping in mind that Time base duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and handled in milliseconds basis. - Set NVIC Group Priority to 4 - Low Level Initialization */ HAL_Init(); /* Configure the system clock to 100 MHz */ SystemClock_Config(); /* Configure LED2 */ BSP_LED_Init(LED2); /*##-1- Configure the SPI peripheral #######################################*/ /* Set the SPI parameters */ SpiHandle.Instance = SPIx; SpiHandle.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_256; SpiHandle.Init.Direction = SPI_DIRECTION_2LINES; SpiHandle.Init.CLKPhase = SPI_PHASE_1EDGE; SpiHandle.Init.CLKPolarity = SPI_POLARITY_LOW; SpiHandle.Init.DataSize = SPI_DATASIZE_8BIT; SpiHandle.Init.FirstBit = SPI_FIRSTBIT_MSB; SpiHandle.Init.TIMode = SPI_TIMODE_DISABLE; SpiHandle.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE; SpiHandle.Init.CRCPolynomial = 7; SpiHandle.Init.NSS = SPI_NSS_SOFT; #ifdef MASTER_BOARD SpiHandle.Init.Mode = SPI_MODE_MASTER; #else SpiHandle.Init.Mode = SPI_MODE_SLAVE; #endif /* MASTER_BOARD */ if(HAL_SPI_Init(&SpiHandle) != HAL_OK) { /* Initialization Error */ Error_Handler(); } #ifdef MASTER_BOARD /* Configure User push-button button */ BSP_PB_Init(BUTTON_KEY, BUTTON_MODE_GPIO); /* Wait for User push-button press before starting the Communication */ while (BSP_PB_GetState(BUTTON_KEY) == GPIO_PIN_SET) { BSP_LED_Toggle(LED2); HAL_Delay(100); } BSP_LED_Off(LED2); #endif /* MASTER_BOARD */ /*##-2- Start the Full Duplex Communication process ########################*/ /* Enable SPI before start transmission */ LL_SPI_Enable(SpiHandle.Instance); while(ubNbDataToReceive > 0) { /* Check TXE flag to transmit data */ if(( LL_SPI_IsActiveFlag_TXE(SpiHandle.Instance)) && (ubNbDataToTransmit > 0)) { /* Transmit 16bit Data */ LL_SPI_TransmitData8(SpiHandle.Instance, aTxBuffer[ubTransmitIndex++]); ubNbDataToTransmit--; } /* Check RXE flag */ if(LL_SPI_IsActiveFlag_RXNE(SpiHandle.Instance)) { /* Receive 16bit Data */ aRxBuffer[ubReceiveIndex++] = LL_SPI_ReceiveData8(SpiHandle.Instance); ubNbDataToReceive--; } } /*##-3- Compare the sent and received buffers ##############################*/ /* Compare the sent and received buffers */ if (Buffercmp((uint8_t *)aTxBuffer, (uint8_t *)aRxBuffer, COUNTOF(aTxBuffer))) { /* Transfer error in transmission process */ Error_Handler(); } else { /* Turn LED2 on: Transfer in transmission/Reception process is correct */ BSP_LED_On(LED2); } /* Infinite loop */ while (1) { } } /** * @brief System Clock Configuration * The system Clock is configured as follow : * System Clock source = PLL (HSE) * SYSCLK(Hz) = 100000000 * HCLK(Hz) = 100000000 * AHB Prescaler = 1 * APB1 Prescaler = 2 * APB2 Prescaler = 1 * HSI Frequency(Hz) = 8000000 * PLL_M = 8 * PLL_N = 400 * PLL_P = 4 * PLL_Q = 7 * VDD(V) = 3.3 * Main regulator output voltage = Scale1 mode * Flash Latency(WS) = 3 * @param None * @retval None */ static void SystemClock_Config(void) { RCC_ClkInitTypeDef RCC_ClkInitStruct; RCC_OscInitTypeDef RCC_OscInitStruct; /* Enable Power Control clock */ __HAL_RCC_PWR_CLK_ENABLE(); /* The voltage scaling allows optimizing the power consumption when the device is clocked below the maximum system frequency, to update the voltage scaling value regarding system frequency refer to product datasheet. */ __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1); /* Enable HSI Oscillator and activate PLL with HSI as source */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = 8; RCC_OscInitStruct.PLL.PLLN = 400; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV4; RCC_OscInitStruct.PLL.PLLQ = 7; if(HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); } /* Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2 clocks dividers */ RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2); RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1; if(HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3) != HAL_OK) { Error_Handler(); } } /** * @brief This function is executed in case of error occurrence. * @param None * @retval None */ static void Error_Handler(void) { while(1) { /* Toggle LED2 for error */ BSP_LED_Toggle(LED2); HAL_Delay(1000); } } /** * @brief Compares two buffers. * @param pBuffer1, pBuffer2: buffers to be compared. * @param BufferLength: buffer's length * @retval 0 : pBuffer1 identical to pBuffer2 * >0 : pBuffer1 differs from pBuffer2 */ static uint16_t Buffercmp(uint8_t *pBuffer1, uint8_t *pBuffer2, uint16_t BufferLength) { while (BufferLength--) { if((*pBuffer1) != *pBuffer2) { return BufferLength; } pBuffer1++; pBuffer2++; } return 0; } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /** * @} */ /** * @} */