
1

Data exchange between STM32F411 and PC using USB

Note for using CDC(communication device class) or VCP(Virtual Com Port) to

exchange data between STM32 and PC via USB.

The sample code and related tools can be downloaded via:

https://bitbucket.org/rwmao/cdc_onstm32f411rc/downloads

https://bitbucket.org/rwmao/cdc_onstm32f411rc/src it is a repository. There is wiki

too.

If you are not patient to read through, you can directly go to the last part:

Bugs or possible error you may face.

Development tools:

Keil 5.16a, FDP2.6 pack.

Cubemx v1.8pack.

Chip: STM32F411RC 64pins.

--

Implementation of hardware:
On STM32 side, USB must be correctly configured.

The d- and d+ datalines are simply connected to the STM32F411RC micro-controller

(PA11 and PA12).

One of the most important thing is the 1.5k pull-up resistor to identify the devices

itself as high speed USB.

Without the resistor, PC may not be able to detect the device at all.

On PC side, no need for any hardware implementation as long as USB port is

available.

VCP driver is needed for PC to correctly access the data.

http://www.st.com/web/en/catalog/tools/PF257938

You also need a software to monitor the data sent through USB (virtual com port).

The software can be found in the repository.

--

2

Software implementation.

1. Use STM32F4cubemx to generate the project.
Not much to configure. Only select USB and I2C. Note I2C is not necessary for VCP. I

used it for something else.

3

2. Implement the USB TX function.

(1). Implement the data sending function, CDC_Transmit_FS. in file:usbd_cdc_if.c

/**

 * @brief CDC_Transmit_FS

 * Data send over USB IN endpoint are sent over CDC interface

 * through this function.

 * @note

 * @param Buf: Buffer of data to be send

 * @param Len: Number of data to be send (in bytes)

 * @retval Result of the operation: USBD_OK if all operations are OK

else USBD_FAIL or USBD_BUSY

 */

uint8_t CDC_Transmit_FS(uint8_t* Buf, uint16_t Len)

{

 //I revised the code to send long strings exceeding

APP_TX_DATA_SIZE. rwmao

 uint8_t result = USBD_OK;

 if (hUsbDevice_0 == NULL) return USBD_FAIL;

 USBD_CDC_HandleTypeDef *pCDC =

 (USBD_CDC_HandleTypeDef *)hUsbDevice_0->pClassData;

 if (pCDC->TxState != 0) return USBD_BUSY;

 /* USER CODE BEGIN 8 */

 if (Len > APP_TX_DATA_SIZE)

 {

 int offset;

4

 for (offset = 0; offset < Len; offset++)

 {

 int todo = MIN(APP_TX_DATA_SIZE,

 Len - offset);

 result = CDC_Transmit_FS(Buf + offset, todo);

 if ((result != USBD_OK) && (result != USBD_BUSY)

) {

 /* Error: Break out now */

 return result;

 }

 }

 return USBD_OK;

 }

 pCDC = (USBD_CDC_HandleTypeDef *)hUsbDevice_0->pClassData;

 /* TODO: Consider a timeout in the following wait loop. */

 while(pCDC->TxState) { } //Wait for previous transfer to complete

 int i;

 for (i = 0; i < Len; i++) {

 UserTxBufferFS[i] = Buf[i];

 }

 USBD_CDC_SetTxBuffer(hUsbDevice_0, &UserTxBufferFS[0], Len);

 result = USBD_CDC_TransmitPacket(hUsbDevice_0);

 /* USER CODE END 8 */

 return result;

}

You can change the buffer size too.

5

Now the function to send data is ready.

For convenience, we define a function to call the subroutine in usb_device.c(.h).

Now in main.c, you can call the subroutine to send data.

6

A snapshot of the captured data is:

--

3. Bugs or possible error you may face.

 (1). PC doesn't response at all when you plug in the usb cable.

This is the most headache you may face. There are lots of possibility.

One of them is the missing pull-up resistor. Look at the first page. You may need to

connect a 1.5kohm pull up resistor.

The idea is the device needs to be correctly identified.

http://www.usbmadesimple.co.uk/ums_3.htm

7

(2). PC response, but it prompts "USB device not recognized"

The problem is that my own board uses self-powered usb. VBus is not used.

Therefore it should be disabled.

(3).USB is recognized by PC, but reported as unknown or "This
device cannot start"
This problem was discussed in the forum as link:

This one is easy to correct. Go to startup file

and change stacksize and heap size from 400-> 4000, 200->2000.

8

Last note, internal clock is OK for the USB data transfer.

Dr. RongWei Mao

2015-10-23

