31/07/2018 184812[PostContent].html

Im Using STM32F767Z1 Nucleo Board which has 2Mbytes of flash for code storage. It also allows for the flash to be evenly
divided between two banks. This gives bank 1 one Mbyte of data, and bank 2 one Mbyte of data.

Bank 1 Address offset in Flash is 0x08000000

Bank 2 Address offset in Flash is 0x08100000

With the use of nDBOOT = nDBANK = 0 option bytes the memory is configured in the dual bank, dual boot mode.
My Current Testing Procedure:

Step 1) I compile the firmware which has a single byte indicating the version of the firmware. I compile it twice once with
version byte as 1, and once with version byte as 2. Otherwise its identical code.

Step 2) I use STM32 ST-Link Utility to manually program each version into each bank and run it. I do this for both version
with both banks, so 4 times.

I use the following option bytes to run from bank 1 while programming the .bin at offset for Bank 1:

Jtion Bytes *
Read Out Protection BOR Level
Level 0 v F [Level D v|R
User configuration option byte
WDGE_STOP MWDG_STDBY nE oot nBOOTO
M wWwWDG_SwW I'wDG_ULP nBoot1 BOOT1

nSRAM_Paity [MFZ_IwWDG_STOP [nDBOOT nBFB2
SRAM2_RST M FZ_IwDG_STDBY []nDBANK nBOOT_SEL

SRAM2_PE PCROP_RDP DE1M DUALBANK
nRST_SHDW nBootl_Sw_Cfg IRHEN BORENM

M nRST_STOP nSWEBOOTO] IWDG_Sw

M RST_STDBY WDDA_Manitor SDADC12 VDD_Monitor

MRST_MODE

Security option bytes
SEC SIZE 0x00 BOOT_LOCK

Boot address option bytes

BOOT_ADDO(H) |0x2000 Boot from (H) | 008000000
BOOT_ADD1 (H) |0x2040 Boot from (H) | 0x08100000

file:///C:/Work/STM/data/1-Faical/184812[PostContent].html

13

31/07/2018 184812[PostContent].html
And 1 use the following option bytes to run from bank 2 while programming the .bin at offset for Bank 2:

Option Bytes X

Read Out Protection BOR Level

Level 0 v F |LevelD ~| R

User configuration option byte
WDG_STOP WDG_STDBY rB oot nBOOTO

WwWDG_SW WwDG_ULP nBoot1 BOOT1
nSAAM_Paty [MF2_IWDG_STOP [InDBOOT nBFE2
SRAM2 RST FZ_IWDG_STDBY [JnDBANK nBOOT SEL
SRAMZ_PE PCROP_RDP DB1M DUALBAMNK
nRST_SHDW nBootl_Sw_Cfg IRHEN BOREN

M nRST_STOP nSWEBOOTL] WDG_SwW

I nRST_STDBY YDDA_Monitor SDADC12 VDD _Monitor
MRST_MODE

Security option butes
SEC_SIZE 0x00 BOOT_LOCK

Boot address option bytes

BODT_ADDO(H) |0x2040 | Boot from (H) |0x08100000
BOOT_ADD1(H) 042000 | Boot from (H) |0x08000000

All of this up to this point works as expected and im able to read out the different versions from each of the banks.

Step 3) I load version 1 into bank 1 using method above and i use the following code to programmatically erase/program bank
2 with Version 2 firmware.

HAL_FLASH_Unlock(); /* Unlock the Flash to enable the flash control register access **¥¥¥¥ikkikkx/
HAL_FLASH_OB_Unlock(); /* Allow Access to option bytes sector */

FLASH_EraseInitTypeDef pEraseInit;

if ((SYSCFG->MEMRMP & SYSCFG_MEMRMP_SWP_FB) == RESET) //Test if Bank == 1

{
pEraseInit.Banks = FLASH_BANK_ 2;
pEraseInit.TypeErase = FLASH_TYPEERASE_MASSERASE;
pEraseInit.VoltageRange = VOLTAGE_RANGE_3;
uint32_t SectorError = 0;
halstatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
if(halstatus != HAL_OK)
{

return 15;

}

}

else

{

pEraseInit.Banks = FLASH_BANK_1;

pEraseInit.TypeErase = FLASH_TYPEERASE_MASSERASE;
pEraseInit.VoltageRange = VOLTAGE_RANGE_3;

uint32_t SectorError = 0;

halstatus = HAL_FLASHEx_Erase(&pEraseInit, &SectorError);
if(halstatus != HAL_OK)

{

}

PP PP PR PR PR PR PP PP PR R PR PR RRRRRRRRRRRRRRRRRRRPRPR??

return 15;

And use this code to actually program it

uint32_t BaseAddress = 9;
if ((SYSCFG->MEMRMP & SYSCFG_MEMRMP_SWP_FB) == RESET) //Test if Bank ==

{

BaseAddress = 0x08100000;
}
else

BaseAddress = 0x08000000;

}

HAL_FLASH_Unlock();

HAL_FLASH_OB_Unlock();
__HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_WRPERR);

_ HAL_FLASH_CLEAR_FLAG(FLASH_FLAG_ALL_ERRORS);
for(int i = @; i < 48; i++)

file:///C:/Work/STM/data/1-Faical/184812[PostContent].html 2/3

31/07/2018 184812[PostContent].html

{
halstatus = HAL_FLASH_Program(FLASH_TYPEPROGRAM_ BYTE,BaseAddress + FirmwareAddressOffset + i,FirmwareData[i]);
if(halstatus != HAL_OK)
{
return 4; //Error 4
}
}

int verified = 0;
uint8_t val = 9;
for(int i = @; i < 48; i++)

{
val = *(__TI0 uint8_t *) (BaseAddress + FirmwareAddressOffset + i);
if(val == FirmwareData[i])
{
verified++;
¥

//verified++; //Added for Debug

if(verified == 48)

{ FirmwareAddressOffset = FirmwareAddressOffset + 48;
return 3;//0K

}

else

{

return 4;//Error
S r r EE

Once its all done i use the following code to actually switch the banks

HAL_FLASH_OB_Unlock();
FLASH_OBProgramInitTypeDef flashConfig;
if ((SYSCFG->MEMRMP & SYSCFG_MEMRMP_SWP_FB) == RESET) //Test if Bank == 1
{
//Switch boot to bank 2, should be done at the end of update
FLASH_WaitForLastOperation(9000);
HAL_FLASHEXx_OBGetConfig(&flashConfig);
flashConfig.BootAddre = 0x2040;
flashConfig.BootAddrl = ©x2000;
HAL_FLASHEX_OBProgram(&flashConfig);

else

//Switch boot to bank 1, should be done at the end of update
FLASH_WaitForLastOperation(9000);
HAL_FLASHEx_OBGetConfig(&flashConfig);

flashConfig.BootAddre = 0x2000;

flashConfig.BootAddrl = 0x2040;
HAL_FLASHEX_OBProgram(&flashConfig);

}
HAL_FLASH_OB_Launch();

So for Step 3 This works. It loads version 2 into Bank 2 and starts running it. I can see version 2 being output, and after i hit
hard reset it again loads the new firmware from Bank 2. All is as expected here.

My problem is as follows:
When i try to program version 1 or version 2 into Bank 2 and run the upgrade process it never is able to program anything into
bank 1. It can erase it but the actual program never happens even though no errors are reported except when it actually tries to

verify the memory against the live data. When i look at the Bank 1 memory after programming from Bank 2 its all OXFFFF.

I need help to figure out why it is able to program Bank 2 from Bank 1, but fails to program Bank 1 when running from Bank
2?

-Andriy

file:///C:/Work/STM/data/1-Faical/184812[PostContent].html 3/3

