
STM32L4 technical training

Controller Area Network (CAN)

Hands-on session

CAN Lab
CAN connectivity – sending and receiving of CAN messages

CAN connectivity

• Objective

• Learn how to configure CAN in CubeMX

• Learn how to generate code in CubeMX and use HAL functions

• Method

• Develop an application, which sends CAN messages and receives CAN messages

CAN hardware connection
• STM32L4 as a CAN node

• BxCAN - embedded CAN controller 2.0A/B

• Internal RC 48 MHz (MSI – Multi Speed Internal), which can be trimming by LSE

(Low Speed External) and can be used as an accurate source of clock signal for

CAN controller

• CAN TX and CAN RX pins needs to be connected to external CAN transceiver

48MHz RC

C
A

N
 L

O
W

CAN transceiver

BxCAN

C
A

N
 H

IG
H

STM32L4 - based CAN node

120 Ohm CAN terminator

120 Ohm CAN terminator

• STM32L476RG-Discovery is not equipped with a CAN transceiver, which is

needed for CAN connectivity in network.

• For purpose of CAN evaluation with STM32L476RG-Discovery, one of CAN

test modes can be used (silent, loopback or silent+loopback).

CAN connection
STM32L476RG-Discovery

Not ready for CAN network connectivity

1. Silent

TX

CAN Core

RX

=1

CAN TX CAN RX

2. Loopback

TX

CAN Core

RX

CAN TX CAN RX

3. Combined Loopback and Silent

TX

CAN Core

RX

=1

CAN TX CAN RX

STM32CubeMX
Selecting CAN interface and clock

• Create project in STM32CubeMX

• Menu > File > New Project

• Select STM32L4 -> STM32L4x6 -> LQFP100 package -> STM32L476VGTx

• Select CAN:

• Select “Master Mode” for CAN1

• Select LSE:

• Select “Crystal/Ceramic Resonator” for Low Speed Clock (LSE) of RCC

LSE is

needed to

trimm the MSI

STM32CubeMX
clock configuration

• Go to Clock Configuration tab and configure MCU clock system:

• Change MSI default value (4 MHz) to 48 MHz

STM32CubeMX
Configure CAN

• Go to Configuration tab and select CAN peripheral

STM32CubeMX
configuration of CAN mode

• Select Parameter Settings tab

• Change Operating Mode as

Loopback or Silent

• Press Ok to confirm the

configuration

STM32CubeMX
configuration of CAN baudrate

• Select Parameter Settings tab

• Fill in Bit Timing Parameters to set

CAN baudrate

• Press Ok to confirm the

configuration

• Formula used to calculate CAN baudrate

• More information:

How to understand parameters, which have impact on

CAN baudrate?

• http://www.bittiming.can-wiki.info/ webpage allows to obtain CAN

baudrate configuation parameters automatically

1. Select STMicroelectronics

as a CAN controller vendor

2. Select MCU’s system clock

3. Click on Request Table

button

4. Find desired CAN baudrate

in the table and copy clock prescaler, SB1 and SB2 into the CubeMX

Easy configuration of CAN baudrate

Example for

CAN baudrate

250 kbit/s

http://www.bittiming.can-wiki.info/

STM32CubeMX
Configure clock

• Go to Configuration tab and select RCC peripheral

STM32CubeMX
configuration of the MSI calibration with LSE

• Select Parameter Settings tab

• Enable MSI Auto Calibration

• Press Ok to confirm the

configuration

STM32CubeMX
Project generation

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

• After successful code generation by STM32CubeMX this is the right

time to import it into SW4STM32 toolchain for further processing

Modifying the code
data declaration - main.c file

Tasks:
1. Create structures for managing CAN (filters, tranmission message, reception message)

2. Configure filters in the way, that all received messages are accepted

/* USER CODE BEGIN PV */

/* Private variables ---*/

CAN_FilterConfTypeDef sFilterConfig;

CanTxMsgTypeDef TxMessage;

CanRxMsgTypeDef RxMessage;

/* USER CODE END PV */

/* USER CODE BEGIN 2 */

sFilterConfig.FilterNumber = 0;

sFilterConfig.FilterMode = CAN_FILTERMODE_IDMASK;

sFilterConfig.FilterScale = CAN_FILTERSCALE_32BIT;

sFilterConfig.FilterIdHigh = 0x0000;

sFilterConfig.FilterIdLow = 0x0000;

sFilterConfig.FilterMaskIdHigh = 0x0000;

sFilterConfig.FilterMaskIdLow = 0x0000;

sFilterConfig.FilterFIFOAssignment = 0;

sFilterConfig.FilterActivation = ENABLE;

sFilterConfig.BankNumber = 0;

HAL_CAN_ConfigFilter(&hcan1, &sFilterConfig);

/* USER CODE END 2 */

CAN filter structure

CAN transmission and

reception structuresstructure

CAN filter configuration

function call

CAN filter strucutre items

configuration

• Implementation of CAN message reception by pooling

MCU’s repetitive

tasks

New CAN

message

received?

Pooling approach

Modifying the code
message transmission and reception - main.c file

Tasks:
1. Fill in structure for CAN message transmission

2. In infinite loop call two functions: to send and receive CAN message

/* USER CODE BEGIN 2 */

TxMessage.StdId = 0x123;

TxMessage.RTR = CAN_RTR_DATA;

TxMessage.IDE = CAN_ID_STD;

TxMessage.DLC = 8;

TxMessage.Data[0] = 0x09;

TxMessage.Data[1] = 0x10;

TxMessage.Data[2] = 0x2A;

TxMessage.Data[3] = 0x3B;

TxMessage.Data[4] = 0x4C;

TxMessage.Data[5] = 0x5D;

TxMessage.Data[6] = 0x6E;

TxMessage.Data[7] = 0x7F;

/* USER CODE END 2 */

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

TxMessage.Data[0]++;

HAL_CAN_Transmit(&hcan1,10);

HAL_CAN_Receive(&hcan1, CAN_FIFO0, 100);

}

/* USER CODE END 3 */

CAN message strucutre

items configuration

Incrementation of CAN

message strucutre’s data item

with each loop iteration

Call of functions: to send and

receive CAN message

Running the application
• In debug session observe content of the

• TxMessage transmission buffer

• RxMessage reception buffer

• Modification of application in order to replace CAN message reception

by pooling with CAN message reception with interrupt

MCU’s repetitive

tasks

New CAN

message

received?

Pooling approach Interrupt approach

New CAN

message

received

MCU’s repetitive

tasks

STM32CubeMX
Configure CAN

• Go to Configuration tab and select CAN peripheral

STM32CubeMX
enabling of CAN receive interrupt

• Select NVIC Settings tab

• Enable CAN1RX0 interrupt

• Press Ok to confirm the

configuration

STM32CubeMX
Project generation

• Now we set the project details for generation

• Menu > Project > Project Settings

• Set the project name

• Project location

• Type of toolchain

• Now we can Generate Code

• Menu > Project > Generate Code

Modifying the code
message transmission and reception - main.c file

Tasks:
1. Call a function to enable CAN reception interrupt

2. Remove call of function, which receives CAN messages in infinie while loop

/* USER CODE BEGIN 2 */

HAL_CAN_Receive_IT(&hcan1, CAN_FIFO0);

/* USER CODE END 2 */

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

TxMessage.Data[0]++;

HAL_CAN_Transmit(&hcan1,10);

HAL_CAN_Receive(&hcan1, CAN_FIFO0, 100);

}

/* USER CODE END 3 */

Function call before

while(1) loop to enable

CAN reception interrupt

Incrementation of CAN

message strucutre’s data item

with each loop iteration

Call of function to

send CAN message

Comparing to pooling approach, call of this function

should be removed, as CAN message reception

will now be implemented in interrupt routine

Modifying the code
message reception - stm32l4xx_it.c file

Tasks:
1. In CAN reception interrupt handler call function to receive CAN message

2. In CAN reception interrupt handler call function to UNLOCK HAL after each interrupt generation

void CAN1_RX0_IRQHandler(void)

{

/* USER CODE BEGIN CAN1_RX0_IRQn 0 */

/* USER CODE END CAN1_RX0_IRQn 0 */

HAL_CAN_IRQHandler(&hcan1);

/* USER CODE BEGIN CAN1_RX0_IRQn 1 */

__HAL_UNLOCK(&hcan1);

HAL_CAN_Receive_IT(&hcan1, CAN_FIFO0);

/* USER CODE END CAN1_RX0_IRQn 1 */

}

Call this function to release

manually HAL for CAN structure

Call of function to receive

CAN message in interrupt

Running the application
• In debug session observe content of the

• TxMessage transmission buffer

• RxMessage reception buffer

Enjoy!

www.st.com/mcu

/STM32 @ST_World st.com/e2e

http://www.st.com/stm32l4

