

February 2017 DocID027636 Rev 3 1/41

 www.st.com

UM1873
User manual

Getting started with the X-CUBE-BLE1 Bluetooth Low Energy
software expansion for STM32Cube

Introduction
The X-CUBE-BLE1 is an expansion software package for STM32Cube. The software runs on the
STM32 and includes drivers for ST’s BlueNRG / BlueNRG-MS Bluetooth Low Energy device. The
expansion is built on STM32Cube software technology to ease portability across different STM32
microcontrollers. The software comes with sample implementations of the drivers running on the
XNUCLEO-IDB04A1 or X-NUCLEO-IDB05A1, when connected to a NUCLEO-L053R8,
NUCLEOL476RG, NUCLEO-F401RE or NUCLEO-F411RE board.

Contents UM1873

2/41 DocID027636 Rev 3

Contents
1 Acronyms and abbreviations ... 6

2 What is STM32Cube? .. 7

2.1 STM32Cube architecture .. 8

3 X-CUBE-BLE1 software, expansion for STM32Cube 10

3.1 Overview ... 10
3.1.1 Bluetooth Low Energy .. 10
3.1.2 Bluetooth operating modes .. 10
3.1.3 Bluetooth Low Energy software partitioning 10
3.1.4 Profiles and services .. 11
3.1.5 Bluetooth Low Energy state machine ... 13

3.2 Architecture ... 13

3.3 Folder structure ... 15

3.4 Guide for writing applications .. 15
3.4.1 APIs .. 15
3.4.2 Initialization ... 16
3.4.3 Security requirements... 17
3.4.4 Connectable mode ... 17
3.4.5 Connection with central device ... 17

3.5 SensorDemo application description ... 18
3.5.1 Time service ... 18
3.5.2 LED service .. 21
3.5.3 Testing the application.. 23
3.5.4 Adding security to sample application .. 32

4 System setup guide ... 35

4.1 Hardware description .. 35
4.1.1 STM32 Nucleo platform .. 35
4.1.2 BlueNRG/BlueNRG-MS expansion board .. 35
4.1.3 BlueNRG USB dongle .. 36

4.2 Software description .. 37

4.3 Hardware and software setup ... 37
4.3.1 Hardware setup .. 37
4.3.2 Software setup .. 37
4.3.3 System setup guide .. 38

5 References ... 39

UM1873 Contents

 DocID027636 Rev 3 3/41

6 Revision history .. 40

List of tables UM1873

4/41 DocID027636 Rev 3

List of tables
Table 1: Acronyms and abbreviations .. 6
Table 2: Document revision history .. 40

UM1873 List of figures

 DocID027636 Rev 3 5/41

List of figures
Figure 1: Firmware architecture .. 8
Figure 2: Bluetooth LE protocol stack ... 10
Figure 3: Structure of a GATT-based profile .. 12
Figure 4: BLE state machine .. 13
Figure 5: STM32 Nucleo + BlueNRG/ BlueNRG-MS expansion board software architecture 14
Figure 6: X-CUBE-BLE1 package folder structure ... 15
Figure 7: Hardware components setup... 23
Figure 8: Initializing the USB dongle ... 24
Figure 9: Scanning for devices ... 25
Figure 10: Create connection ... 26
Figure 11: Discover all supported services ... 27
Figure 12: Discover all supported characteristics ... 28
Figure 13: Reading data from time characteristic ... 29
Figure 14: Writing data to LED button time characteristic .. 30
Figure 15: Enabling notifications from server ... 31
Figure 16: Disconnecting the peripheral device ... 32
Figure 17: Setting the device I/O capabilities ... 33
Figure 18: Setting the pairing parameters .. 33
Figure 19: Pairing with the device ... 34
Figure 20: STM32 Nucleo board ... 35
Figure 21: BlueNRG and BlueNRG-MS expansion boards connected to STM32 Nucleo board 36
Figure 22: STEVAL-IDB003V1 BlueNRG USB dongle ... 36

Acronyms and abbreviations UM1873

6/41 DocID027636 Rev 3

1 Acronyms and abbreviations
Table 1: Acronyms and abbreviations

Term Description

ACI Application controller interface

ANCS Apple notification center service

ATT Attribute protocol

BLE Bluetooth Low Energy

BSP Board support package

BT Bluetooth

GAP Generic access profile

GATT Generic attribute profile

GUI Graphical user interface

HAL Hardware abstraction layer

HCI Host controller interface

HRS Heart rate sensor

IDE Integrated development environment

L2CAP Logical link control and adaptation protocol

LED Light emitting diode

LL Link layer

LPM Low power manager

MCU Micro controller unit

PCI Profile command interface

PHY Physical layer

SIG Special interest group

SM Security manager

SPI Serial peripheral interface

UUID Universally unique identifier

UM1873 What is STM32Cube?

 DocID027636 Rev 3 7/41

2 What is STM32Cube?
What is STM32Cube?

STMCube™ represents an original initiative by STMicroelectronics to ease developers' life
by reducing development effort, time and cost. STM32Cube covers the STM32 portfolio.
Version 1.x of STM32Cube includes:

• STM32CubeMX, a graphical software configuration tool that allows the generation of
C initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per series (such as the
STM32CubeF4 for STM32F4 series).
− STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring

maximized portability across the STM32 portfolio
− A consistent set of middleware components, such as RTOS, USB, TCP/IP,

graphics
− All embedded software utilities, including a full set of examples

How does this software complement STM32Cube?

The proposed software is based on the STM32CubeHAL, the hardware abstraction layer
for the STM32 microcontroller. The package extends STM32Cube by providing a board
support package (BSP) for the BlueNRG/BlueNRG-MS expansion board and some
middleware components for communication with other Bluetooth LE devices. BlueNRG-MS
is a very low power Bluetooth Low Energy (BLE) single-mode network processor, compliant
with Bluetooth specifications core 4.0/4.1. The drivers abstract low-level details of the
hardware and allow the middleware components and applications to access the
BlueNRG/BlueNRG-MS device in a hardware-independent fashion. The software
implements low power optimizations to allow system power consumption of a few micro-
amps.

The package includes different sample applications and provides support for many
standard profiles and for Apple Notification Center Service (ANCS).

Slave profiles (peripheral role):

• Alert Notification Service
• Blood Pressure Service
• Find Me Target
• Glucose Service
• Health Thermometer Service
• Heart Rate Service
• Human Interface Device Service (not supported by STM32 Nucleo-L053R8)
• Proximity Reporter
• Time Server

Master profiles (central role):

• Alert Notification Client
• Blood Pressure Collector
• Find Me Locator
• Glucose Collector
• Health Thermometer Collector
• Heart Rate Collector
• Time Client

What is STM32Cube? UM1873

8/41 DocID027636 Rev 3

2.1 STM32Cube architecture
The STM32Cube firmware solution is based on three independent levels that freely interact
with each other, as shown below:

Figure 1: Firmware architecture

Level 0 is divided into three sub-layers:

• The board support package (BSP) layer offers a set of board hardware APIs (audio
codec, IO expander, touchscreen, SRAM driver, LCD drivers, etc.) based on modular
architecture which can be rendered compatible with any hardware by simply running
the low-level routines. The BSP has two parts:
− component: the driver associated with the external device on the board (not the

STM32); the component driver provides specific APIs to the BSP driver external
components and can be ported to any other board.

− BSP driver: links the component driver to a specific board and provides a set of
user-friendly APIs. The naming rule of the APIs is BSP_FUNCT_Action(): ex.
BSP_LED_Init(), BSP_LED_On().

• The hardware abstraction layer (HAL) provides the low level drivers and the hardware
interfacing methods to interact with the upper layers (application, libraries and stacks).
It provides generic, multi-instance and function-oriented APIs which render user
applications unnecessary by providing ready to use processes. For example, it
provides APIs for the communication peripherals (I²S, UART, etc.) for initialization and
configuration, data transfer management based on polling, interrupts or DMA
processes, and management of any communication errors. There are two types of
HAL driver APIs:
− generic APIs which provide common and generic functions to the entire STM32

series.
− extension APIs which provide specific, customized functions for a particualr

family or a certain part number.

UM1873 What is STM32Cube?

 DocID027636 Rev 3 9/41

• Basic peripheral usage examples: this layer includes the examples built for the STM32
peripheral using the HAL and BSP resources only.

Level 1 is divided into two sub-layers:

• Middleware components: a set of libraries covering USB host and device libraries
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interaction between
layer components is handled directly by calling the feature APIs, while vertical
interaction with the low level drivers is managed through specific callbacks and static
macros implemented in the library system call interface. For example, the FatFs
accesses the microSD drive or the USB mass storage class via the disk I/O driver.

• Middleware examples (or applications) for individual components as well as
integration examples across several middleware components are provided.

Level 2 is a single layer providing a global, real-time and graphical demonstration based on
the middleware service layer, the low-level abstraction layer and basic peripheral usage
applications involving board functions.

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

10/41 DocID027636 Rev 3

3 X-CUBE-BLE1 software, expansion for STM32Cube

3.1 Overview
X-CUBE-BLE1 is a software package that expands the functionality provided by
STM32Cube and provides the Bluetooth Low Energy connectivity.

3.1.1 Bluetooth Low Energy
Bluetooth Low Energy is a wireless personal area network technology designed and
marketed by the Bluetooth SIG. It can be used for developing new innovative applications
in fitness, security, healthcare, etc. using devices which run on coin cell batteries, and can
remain operative for “months or years” without draining the battery.

3.1.2 Bluetooth operating modes
According to the Bluetooth standard specification version 4.0, Bluetooth Classic and
Bluetooth Low Energy can both be supported on the same device, in which case it is called
a "dual-mode" device. Dual mode devices are also called "Bluetooth smart ready".

A single-mode device is one which supports only the BLE protocol. Single mode devices
are called "Bluetooth smart".

3.1.3 Bluetooth Low Energy software partitioning
The BLE protocol stack and a small description of each layer are presented below:

Figure 2: Bluetooth LE protocol stack

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 11/41

A typical BLE system consists of an LE controller and a host. The LE controller consists of
a physical layer (PHY) including the radio, a link layer (LL) and a standard host controller
interface (HCI). The host consists of an HCI and other higher protocol layers, e.g. L2CAP,
SM, ATT/GATT and GAP.

The host can send HCI commands to control the LE controller. The HCI interface and the
HCI commands are standardized by the Bluetooth core specification. Please refer to the
official document for more information.

PHY layer insures communication with stack and data (bits) transmission over the air. BLE
operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and defines 40 radio
frequency (RF) channels with 2 MHz channel spacing.

In BLE, when a device only needs to broadcast data, it transmits the data in advertising
packets through the advertising channels. Any device that transmits advertising packets is
called an advertiser. Devices that only aim at receiving data through the advertising
channels are called scanners. Bidirectional data communication between two devices
requires them to connect to each other. BLE defines two device roles at the link layer (LL)
for a created connection: the master and the slave. These are the devices that act as
initiator and advertiser during the connection creation, respectively.

The host controller interface (HCI) layer provides a standardized interface to enable
communication between the host and controller. In BlueNRG, this layer is implemented
through the SPI hardware interface.

In BLE, the main goal of L2CAP is to multiplex the data of three higher layer protocols,
ATT, SMP and link layer control signaling, on top of a link layer connection.

The SM layer is responsible for pairing and key distribution, and enables secure connection
and data exchange with another device.

At the highest level of the core BLE stack, the GAP specifies device roles, modes and
procedures for the discovery of devices and services, the management of connection
establishment and security. In addition, GAP handles the initiation of security features. The
BLE GAP defines four roles with specific requirements on the underlying controller:
Broadcaster, Observer, Peripheral and Central.

The ATT protocol allows a device to expose certain pieces of data, known as "attributes",
to another device. The ATT defines the communication between two devices playing the
roles of server and client, respectively, on top of a dedicated L2CAP channel. The server
maintains a set of attributes. An attribute is a data structure that stores the information
managed by the GATT, the protocol that operates on top of the ATT. The client or server
role is determined by the GATT, and is independent of the slave or master role.

The GATT defines a framework that uses the ATT for the discovery of services, and the
exchange of characteristics from one device to another. GATT specifies the structure of
profiles. In BLE, all pieces of data that are being used by a profile or service are called
"characteristics". A characteristic is a set of data which includes a value and properties.

3.1.4 Profiles and services
The BLE protocol stack is used by the applications through its GAP and GATT profiles. The
GAP profile is used to initialize the stack and setup the connection with other devices. The
GATT profile is a way of specifying the transmission - sending and receiving - of short
pieces of data known as ‘attributes’ over a Bluetooth smart link. All current Low Energy
application profiles are based on GATT. The GATT profile allows the creation of profiles
and services within these application profiles. Here is a depiction of how the data services
are setup in a typical GATT server.

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

12/41 DocID027636 Rev 3

Figure 3: Structure of a GATT-based profile

In this example, the profile above is created with three services:

• GAP Service, which is always mandatory to be setup
• Health thermometer service
• Device information service

Each service consists of a set of characteristics which define the service and the type of
data it provides as part of the service. In the above example, the health thermometer
service contains the following characteristics:

• Temperature measurement
• Temperature type
• Intermediate temperature
• Measurement interval

Each of the above characteristics details a type of data and the value of the data. The
characteristics are defined by "attributes" which define the value of that characteristic.

Each characteristic has at least two attributes: the main attribute (0x2803) and a value
attribute that actually contains the data. The main attribute defines the value attribute's
handle and UUID which allows any client reading the attribute to know which handle to
read to access the value attribute.

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 13/41

3.1.5 Bluetooth Low Energy state machine
Figure 4: BLE state machine

The above diagram describes the state machine during BLE operations. The following
provides an explanation of each of the states:

• Standby: Does not transmit or receive packets.
• Advertising: Broadcasts advertisements in advertising channels. The device is

transmitting advertising channel packets and possibly listening to and responding to
responses triggered by these advertising channel packets.

• Scanning: Looks for advertisers. The device is listening for advertising channel
packets from devices that are advertising.

• Initiating: The device initiates connection to the advertiser and is listening for
advertising channel packets from a specific device(s) and responding to these packets
to initiate a connection with another device.

• Connection: Connection has been made and the device is transmitting or receiving.
− Initiator device will be in master role: it communicates with the device in the slave

role, defines timings of transmissions.
− Advertiser device will be in slave role: it communicates with single device in

master role.

3.2 Architecture
This software is an expansion for STM32Cube, as such it fully complies with the
architecture of STM32Cube and it expands it in order to enable development of
applications accessing and using BlueNRG/BlueNRG-MS stack. Please see the previous
section for an introduction to the STM32Cube architecture.

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

14/41 DocID027636 Rev 3

The software is based on the STM32CubeHAL, the hardware abstraction layer for the
STM32 microcontroller. The package extends STM32Cube by providing a board support
package (BSP) for the BlueNRG/BlueNRG-MS expansion board and some middleware
components for serial communication with a PC.

The software layers used by the application software to access and use the
BlueNRG/BlueNRG-MS expansion board are the following:

• STM32Cube HAL layer: The HAL driver layer provides a generic multi instance simple
set of APIs (application programming interfaces) to interact with the upper layers
(application, libraries and stacks). It is composed of generic and extension APIs. It is
directly built around a generic architecture and allows the layers that are built upon,
such as the middleware layer, to implement their functionalities without dependencies
on the specific hardware configuration for a given microcontroller unit (MCU). This
structure improves the library code reusability and guarantees an easy portability on
other devices.

• Board support package (BSP) layer: The software package needs to support the
peripherals on the STM32 Nucleo board apart from the MCU. This software is
included in the board support package (BSP). This is a limited set of APIs which
provides a programming interface for certain board specific peripherals, e.g. the LED,
the user button, etc. This interface also helps in identifying the specific board version.
For the BlueNRG/BlueNRG-MS expansion board, it provides support for Bluetooth
Low Energy connectivity.

The figure below outlines the software architecture of the package:
Figure 5: STM32 Nucleo + BlueNRG/ BlueNRG-MS expansion board software architecture

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 15/41

3.3 Folder structure
This section provides an overview of the package folder structure.

The figure below shows the architecture of the package.
Figure 6: X-CUBE-BLE1 package folder structure

The following folders are included in the software package:

• The Documentation folder contains a compiled HTML file generated from the source
code and documentating in details the software components and APIs.

• The Drivers folder contains the HAL drivers, the board specific drivers for each
supported board or hardware platform, including the on-board components ones and
the CMSIS layer which is a vendor-independent hardware abstraction layer for the
Cortex-M processor series.

• The Middlewares folder contains libraries and protocols related to host software and
applications to interface the BlueNRG/BlueNRG-MS controller.

• The Projects folder contains a sub-folder called "Multi" including BLE applications (in
the Applications folder)

• The Utilities folder contains a "FlashUpdaterTool" subfolder with a Java-based
graphical tool allowing the user to upgrade the firmware of the BlueNRG/BlueNRG-MS
expansion board. Notice that this is a preliminary and required step to test the
Applications listed above. The relevant readme file provides more in depth details
about the tool and its usage.

All the applications in the Projects folder are provided for the NUCLEO-L053R8, NUCLEO-
L476RG, NUCLEO-F401RE or NUCLEO-F411RE platforms with three development
environments (IAR Embedded Workbench for ARM, RealView Microcontroller
Development Kit (MDK-ARM) and System Workbench for STM32.

3.4 Guide for writing applications
This section describes how to write a BLE application based on STM32 Nucleo board
equipped with BlueNRG/BlueNRG-MS expansion board, and add GATT services and
characteristics to it. Please refer to UM1686 "BlueNRG development kits" for seeing more
details about the ACI API referenced in this section.

3.4.1 APIs
This section describes generic initialization and setup while writing BLE applications.

In this setup, the STM32 Nucleo board acts as GATT server (and as a peripheral device)
and the PC as a GATT client (and as a central device).

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

16/41 DocID027636 Rev 3

Detailed technical information about the APIs available to the user can be found in a
compiled HTML file located inside the "Documentation" folder of the software package
where all the functions and parameters are fully described.

3.4.2 Initialization
Every application must to perform the basic initialization steps in order to configure and set
up the STM32 Nucleo with the BlueNRG/BlueNRG expansion board hardware and the
software stack for correct operation. This section describes the initialization steps required.

3.4.2.1 Initializing STM32 Cube HAL
The STM32Cube HAL library must be initialized so that the necessary hardware
components are correctly configured.

• HAL_Init();

This API initializes the HAL library. It configures Flash prefetch, Flash preread and Buffer
cache. It also configures the time base source, vectored interrupt controller and low-level
hardware.

3.4.2.2 Initializing Nucleo board peripherals
Some of the Nucleo on-board peripherals and hardware need to be configured before using
them (if they are used). The functions to do this are:

• BSP_LED_Init(Led_TypeDef Led);

This API configures the LED on the Nucleo.

• BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef Button_Mode);

This API configures the user button in GPIO mode or in external interrupt (EXTI) mode.

• BSP_JOY_Init();

This API configures the joystick if the board is equipped with one.

3.4.2.3 Initializing BlueNRG HAL and HCI
The BlueNRG HAL provides the API and the functionality for performing operations related
to the BlueNRG/BlueNRG expansion board. This layer must be initialized so that STM32
CUBE HAL is configured properly for use with the BlueNRG/BlueNRG expansion board.

• BNRG_SPI_Init();

This API is used to initialize the SPI communication with the BlueNRG/BlueNRG expansion
board.

• HCI_Init();

This API initializes the host controller interface (HCI).

• BlueNRG_RST();

This API resets the BlueNRG/BlueNRG expansion board.

3.4.2.4 Initialization and services characteristics
BlueNRG's stack must be correctly initialized before establishing a connection with another
BLE device. This is done with the following two commands.

• aci_gap_init(uint8_t role, uint16_t* service_handle, uint16_t* dev_name_char_handle,
uint16_t* appearance_char_handle);

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 17/41

This API initializes BLE device for a particular role (peripheral, broadcaster, central device
etc.). The role is passed as first parameter to this API.

• aci_gatt_add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&servHandle);

This API adds a service on the GATT server device. Here service_uuid is the 128-bit
private service UUID allocated for the service (primary service). This API returns the
service handle in servHandle.

3.4.3 Security requirements
The BlueNRG stack exposes an API that the GATT client application can use to specify its
security requirements. If a characteristic has security restrictions, a pairing procedure must
be initiated by the central device in order to access that characteristic. In the provided BLE
SensorDemo a fixed pin (123456) is used as follow:

• aci_gap_set_auth_requirement(MITM_PROTECTION_REQUIRED,
OOB_AUTH_DATA_ABSENT, NULL, 7, 16, USE_FIXED_PIN_FOR_PAIRING,
123456, BONDING);

3.4.4 Connectable mode
On the GATT server device the following GAP ACI command is used to enter on general
discoverable mode:

• aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR, NO_WHITE_LIST_USE,8,
local_name, 0, NULL, 0, 0);

3.4.5 Connection with central device
Once the device used as GATT server is put in a discoverable mode, it can be seen by the
GATT client role device in order to create a BLE connection.

On GATT Client device the following GAP ACI command is used to connect with the GATT
server device in advertising mode:

• aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR, bdaddr,
PUBLIC_ADDR, 9, 9, 0, 60, 1000 , 1000), where bdaddr is the peer address of the
GATT Client role device.

Once the two devices are connected the BLE communication will work as follows:

• On GATT server role device the following API should be invoked for updating
characteristic value:
− aci_gatt_update_char_value(chatServHandle, TXCharHandle, 0, len, (tHalUint8

*)data)

where data contains the value by which the attribute pointed to by the characteristic handle
TxCharHandle contained within the service chatServHandle, will be updated.

• On GATT client device, following API should be invoked for writing to a characteristic
handle:
− aci_gatt_write_without_response(connection_handle, RX_HANDLE+1, len,

(tHalUint8 *)data)

where data is the value of the attribute pointed to by the attribute handle RX_HANDLE
contained in the connection handle connection_handle. connection_handle is the handle
returned on connection creation as parameter of the EVT_LE_CONN_COMPLETE event.

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

18/41 DocID027636 Rev 3

3.5 SensorDemo application description
This section describes various services and characteristics in the SensorDemo application,
one of the applicative examples included in the package.

The project files for the SensorDemo application can be found here:

$BASE_DIR\Projects\Multi\Applications\SensorDemo

In the SensorDemo application, the STM32 Nucleo device creates two services:

• Accelerometer service with the free-fall characteristic data and the directional
acceleration value characteristic in three directions (x, y, and z axis)

• Environmental Service with the following characteristics:
− Temperature data characteristic
− Pressure data characteristic
− Humidity data characteristic

Please note that there is no "real" environment sensor and accelerometer on the STM32
Nucleo board and the data being generated is "simulated" data.

The application creates services and characteristics using ACI APIs described in Section
3.4.1: "APIs" and then waits for a client (central device) to connect to it. It advertises its
services and characteristics to the listening client devices while waiting for a connection to
be made. After the connection is created by the central device, data is periodically updated.

This application also shows how to add new GATT services and characteristics. Setting the
NEW_SERVICES to 1 (in $PATH_TO_THIS_APPLICATION\Inc\sensor_service.h), two
new services are enabled: Time service and LED service.

3.5.1 Time service
Time service is the new service that will be added to the SensorDemo application. Time
service has the following two characteristics:

• Seconds characteristic: exposes the number of seconds passed since system boot.
This is a read only characteristic.

• Minutes characteristic: exposes the number of minutes passed since system boot.
This characteristic can be read by GATT server, and a "notify" event is generated for
this characteristic at one minute intervals.

3.5.1.1 Adding Time service
The following piece of code in sensor_service.c is adding "Time service" and its
corresponding characteristics to the SensorDemo application. As explained in Section
3.4.2.4: "Initialization and services characteristics" of this document, the
aci_gatt_add_serv() API is used to add a service to the application, and the
aci_gatt_add_char()is used to add the characteristics. Please refer to UM1686: BlueNRG
development kits for details about these APIs. Please note that while adding "seconds
characteristic", it is marked as a characteristic supporting read operation by using
CHAR_PROP_READ argument. Similarly "minute characteristic" is marked as readable
and notifiable by using the CHAR_PROP_NOTIFY|CHAR_PROP_READ argument.

/**
 * @brief Add a time service using a vendor specific profile
 * @param None
 * @retval Status
 */
tBleStatus Add_Time_Service(void)
{

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 19/41

 tBleStatus ret;
 uint8_t uuid[16];

 /* copy "Timer service UUID" defined above to 'uuid' local variable */
 COPY_TIME_SERVICE_UUID(uuid);

 /*
 * now add "Time service" to GATT server, service handle is returned
 * via 'timeServHandle' parameter of aci_gatt_add_serv() API.
 * Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
 * API description
 */
 ret = aci_gatt_add_serv(UUID_TYPE_128, uuid, PRIMARY_SERVICE, 7,
 &timeServHandle);
 if (ret != BLE_STATUS_SUCCESS) goto fail;

 /*
 * now add "Seconds characteristic" to Time service, characteristic handle
 * is returned via 'secondsCharHandle' parameter of aci_gatt_add_char() API.
 * This characteristic is read only, as specified by CHAR_PROP_READ parameter.
 * Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
 * API description
 */
 COPY_TIME_UUID(uuid);
 ret = aci_gatt_add_char(timeServHandle, UUID_TYPE_128, uuid, 4,
 CHAR_PROP_READ, ATTR_PERMISSION_NONE, 0,
 16, 0, &secondsCharHandle);
 if (ret != BLE_STATUS_SUCCESS) goto fail;

 COPY_MINUTE_UUID(uuid);
 /*
 * Add "Minutes characteristic" to "Time service".
 * This characteristic is readable as well as notifiable only, as specified
 * by CHAR_PROP_NOTIFY|CHAR_PROP_READ parameter below.
 */
 ret = aci_gatt_add_char(timeServHandle, UUID_TYPE_128, uuid, 4,
 CHAR_PROP_NOTIFY|CHAR_PROP_READ, ATTR_PERMISSION_NONE, 0,
 16, 0, &minuteCharHandle);
 if (ret != BLE_STATUS_SUCCESS) goto fail;

 PRINTF("Service TIME added. Handle 0x%04X, TIME Charac handle:
0x%04X\n",timeServHandle, secondsCharHandle);
 return BLE_STATUS_SUCCESS;

 /* return BLE_STATUS_ERROR if we reach this tag */
fail:
 PRINTF("Error while adding Time service.\n");
 return BLE_STATUS_ERROR ;
}

Finally, Add_Time_Service()function should be called from main() function defined in
main.c. The following code performs this task.

 /* instantiate timer service with 2 characteristics:-
 * 1. seconds characteristic: Readable only
 * 2. Minutes characteristics: Readable and Notifiable
 */
 ret = Add_Time_Service();

 if(ret == BLE_STATUS_SUCCESS)
 PRINTF("Time service added successfully.\n");
 else
 PRINTF("Error while adding Time service.\n");

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

20/41 DocID027636 Rev 3

3.5.1.2 Update and notify characteristic value
Time service has "seconds characteristic" as a "readable" characteristic. Support for
updating this characteristic must be provided in this application. Seconds_Update()
function, defined below, performs this task.

/**
 * @brief Update seconds characteristic value of Time service
 * @param AxesRaw_t structure containing acceleration value in mg
 * @retval Status
 */
tBleStatus Seconds_Update(void)
{
 tHalUint32 val;
 tBleStatus ret;

 /* Obtain system tick value in milliseconds, and convert it to seconds. */
 val = HAL_GetTick();
 val = val/1000;

 /* create a time[] array to pass as last argument of aci_gatt_update_char_value()
API*/
 const tHalUint8 time[4] = {(val >> 24)&0xFF, (val >> 16)&0xFF, (val >> 8)&0xFF,
(val)&0xFF};
/*
 * Update value of "Seconds characteristic" using aci_gatt_update_char_value() API
 * Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
 * API description
 */
 ret = aci_gatt_update_char_value(timeServHandle, secondsCharHandle, 0, 4,
 time);

 if (ret != BLE_STATUS_SUCCESS){
 PRINTF("Error while updating TIME characteristic.\n") ;
 return BLE_STATUS_ERROR ;
 }
 return BLE_STATUS_SUCCESS;
}

Similarly, the value of "minutes characteristics" should also be updated. The
Minutes_Notify() function as described below performs this operation. This function
updates the value of the "minutes characteristic" exactly once in a one minute interval.

 /**
 * @brief Send a notification for a minute characteristic of time service
 * @param None
 * @retval Status
 */
tBleStatus Minutes_Notify(void)
{
 tHalUint32 val;
 tHalUint32 minuteValue;
 tBleStatus ret;

 /* Obtain system tick value in milliseconds */
 val = HAL_GetTick();
/* update "Minutes characteristic" value iff it has changed w.r.t. previous
 * "minute" value.
 */
 if((minuteValue=val/(60*1000))!=previousMinuteValue) {
 /* memmorize this "minute" value for future usage */
 previousMinuteValue = minuteValue;

 /* create a time[] array to pass as last argument of
aci_gatt_update_char_value() API*/
 const tHalUint8 time[4] = {(minuteValue >> 24)&0xFF, (minuteValue >> 16)&0xFF,

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 21/41

(minuteValue >> 8)&0xFF, (minuteValue)&0xFF};

 /*
 * Update value of "Minutes characteristic" using aci_gatt_update_char_value() API
 * Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
 * API description
 */
 ret = aci_gatt_update_char_value(timeServHandle, minuteCharHandle, 0, 4,
 time);
 if (ret != BLE_STATUS_SUCCESS){
 PRINTF("Error while updating TIME characteristic.\n") ;
 return BLE_STATUS_ERROR ;
 }
 }
 return BLE_STATUS_SUCCESS;
}

Finally, Seconds_Update() and Minutes_Notify() must be invoked from main() function.
Update_Time_Characteristics() described below performs this task.

 /**
 * @brief Updates "Seconds and Minutes characteristics" values
 * @param None
 * @retval None
 */
void Update_Time_Characteristics() {
 /* update "seconds and minutes characteristics" of time service */
 Seconds_Update();
 Minutes_Notify();
}

Please note that main() function invokes Update_Time_Characteristics(), which in turn
invokes Seconds_Update() and Minutes_Notify().

3.5.2 LED service
LED service can be used to control state of LED2 present on STM32 Nucleo board. This
service has a writable "LED button characteristic", which controls the state of the LED2.
When the GATT client application modifies value of this characteristic, LED2 is toggled.

3.5.2.1 Adding GATT service and characteristics
The following code in sensor_service.c adds the LED service and its corresponding "LED
button" characteristic to SensorDemo application.

 /*
 * @brief Add LED button service using a vendor specific profile
 * @param None
 * @retval Status
 */

tBleStatus Add_LED_Service(void)
{
 tBleStatus ret;
 uint8_t uuid[16];

 /* copy "LED service UUID" defined above to 'uuid' local variable */
 COPY_LED_SERVICE_UUID(uuid);
 /*
 * now add "LED service" to GATT server, service handle is returned
 * via 'ledServHandle' parameter of aci_gatt_add_serv() API.
 * Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
 * API description
 */

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

22/41 DocID027636 Rev 3

 ret = aci_gatt_add_serv(UUID_TYPE_128, uuid, PRIMARY_SERVICE, 7,
 &ledServHandle);
 if (ret != BLE_STATUS_SUCCESS) goto fail;
 /* copy "LED button characteristic UUID" defined above to 'uuid' local variable */
 COPY_LED_UUID(uuid);
 /*
 * now add "LED button characteristic" to LED service, characteristic handle
 * is returned via 'ledButtonCharHandle' parameter of aci_gatt_add_char() API.
 * This characteristic is writable, as specified by 'CHAR_PROP_WRITE' parameter.
 * Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
 * API description
 */
 ret = aci_gatt_add_char(ledServHandle, UUID_TYPE_128, uuid, 4,
 CHAR_PROP_WRITE | CHAR_PROP_WRITE_WITHOUT_RESP,
ATTR_PERMISSION_NONE, GATT_SERVER_ATTR_WRITE,
 16, 1, &ledButtonCharHandle);

 if (ret != BLE_STATUS_SUCCESS) goto fail;
PRINTF("Service LED BUTTON added. Handle 0x%04X, LED button Charac handle:
0x%04X\n",ledServHandle, ledButtonCharHandle);
 return BLE_STATUS_SUCCESS;

fail:
 PRINTF("Error while adding LED service.\n");
 return BLE_STATUS_ERROR ;
}

3.5.2.2 Obtaining characteristics value
When an ACI event is detected by BlueNRG BLE stack, it invokes
HCI_Event_CB()function. In HCI_Event_CB() we can analyze value of the received event
packet and take suitable action. HCI_Event_CB() function is described below:

 /**
 * @brief This function is called whenever there is an ACI event to be
processed.
 * @note Inside this function each event must be identified and correctly
 * parsed.
* @param pckt Pointer to the ACI packet
* @retval None
*/
void HCI_Event_CB(void *pckt)
{
 hci_uart_pckt *hci_pckt = pckt;
 /* obtain event packet */
 hci_event_pckt *event_pckt = (hci_event_pckt*)hci_pckt->data;

 if(hci_pckt->type != HCI_EVENT_PKT)
 return;
switch(event_pckt->evt){
 .
 .
 .
 case EVT_VENDOR:
 {
 evt_blue_aci *blue_evt = (void*)event_pckt->data;
 switch(blue_evt->ecode){

 case EVT_BLUE_GATT_ATTRIBUTE_MODIFIED:
 {
 /* this callback is invoked when a GATT attribute is modified
 extract callback data and pass to suitable handler function */
 evt_gatt_attr_modified *evt = (evt_gatt_attr_modified*)blue_evt->data;

 Attribute_Modified_CB(evt->attr_handle, evt->data_length, evt->att_data);
 }

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 23/41

 break;
 .
 .
 }
 }
 break;
 }
}

Attribute_Modified_CB() performs the event handling for LED service. It toggles the LED
present on STM32 Nucleo board when the value of "LED button characteristic" is modified
by the GATT client. Attribute_Modified_CB() is described below:

 /**
 * @brief This function is called attribute value corresponding to
 * ledButtonCharHandle characteristic gets modified
 * @param handle : handle of the attribute
 * @param data_length : size of the modified attribute data
 * @param att_data : pointer to the modified attribute data
 * @retval None
 */
void Attribute_Modified_CB(tHalUint16 handle, tHalUint8 data_length, tHalUint8
*att_data)
{
 /* If GATT client has modified 'LED button characteristic' value, toggle LED2 */
 if(handle == ledButtonCharHandle + 1){
 BSP_LED_Toggle(LED2);
 }
}

3.5.3 Testing the application
In this section the BlueNRG/BlueNRG-MS GUI will be used for testing the SensorDemo
application developed in the previous section. Please download the BlueNRG/BlueNRG-
MS GUI installer provided in the STSW-BNRGUI software package. Detailed instructions
regarding its use can be found in UM1686: BlueNRG development kits. For testing
purposes, hardware components described in Section 4.3.1: "Hardware setup" are needed.
The following diagram shows the interconnections among these components.

Figure 7: Hardware components setup

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

24/41 DocID027636 Rev 3

In subsequent sections, the Nucleo board equipped with BlueNRG expansion board will be
referred to as "peripheral device" and the USB dongle as the "central device" throughout
the document.

3.5.3.1 Testing SensorDemo application using BlueNRG/BlueNRG-MS GUI
This section describes how BlueNRG/BlueNRG-MS GUI can be used to initialize and
configure BlueNRG USB dongle properly so that it can be used to test the BLE application
running on STM32Nucleo board equipped with a BlueNRG/BlueNRG-MS expansion board.
In this example, the PC connected with BlueNRG USB dongle will be configured as "GAP
central device", and the STM32Nucleo board equipped with a BlueNRG/BlueNRG-MS
expansion board is "GAP peripheral device". Once the BlueNRG USB dongle is configured
correctly, it can be used to scan remote devices and send ACI commands described in
UM1686 "BlueNRG development kits". Various useful operations are described below.

3.5.3.2 Initializing the USB dongle
The BlueNRG USB dongle must be initialized so that it can communicate with the "GAP
peripheral device". The following commands are used for this initialization:

1. BLUEHCI_HAL_WRITE_CONFIG_DATA
2. BLUEHCI_GATT_INIT
3. BLUEHCI_GAP_INIT

Figure 8: Initializing the USB dongle

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 25/41

3.5.3.3 Scanning for BLE peripheral device
The command BLUEHCI_GAP_START_GEN_DISC_PROC discovers the "GAP peripheral
device" and the following outcome is generated in the GUI window.
EVT_BLUE_GAP_DEVICE_FOUND confirms that the device has been discovered by the
BlueNRG dongle.

Figure 9: Scanning for devices

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

26/41 DocID027636 Rev 3

3.5.3.4 Connecting to BLE peripheral device
To connect "GAP peripheral device" with the dongle, we need to issue the command
BLUEHCI_GAP_CREATE_CONNECTION from the BlueNRG/BlueNRG-MS GUI.

The peer address required for the connection is the address of the server as mentioned in
the source code:

 tHalUint8 SERVER_BDADDR[] = {0x12, 0x34, 0x00, 0xE1, 0x80, 0x02};

This command will make the connection and return the connection handle. This connection
handle would be required for subsequent commands to retrieve services and
characteristics.

Figure 10: Create connection

The connection handle can be determined from the HCI_LE_META response of the server.
It is indicated in the figure above.

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 27/41

3.5.3.5 Get services supported by BLE peripheral device
The server device supports a number of GATT services and the BlueNRG/BlueNRG-MS
GUI can obtain this information by issuing the command
BLUEHCI_GATT_DISC_ALL_PRIMARY_SERVICES. Once the command is issued the
server responds with EVT_BLUE_ATT_READ_BY_GROUP_RESP for each service
supported by the Server.

Each response includes the connection handle, the length of the response, the data length,
the handle-value pair and the UUID of the service. They are indicated in the figure below.

Figure 11: Discover all supported services

To find the handle of a service the UUID of that particular service (determined from the
server code given) has to be matched with the response payload
(EVT_BLUE_ATT_READ_BY_GROUP_RESP). The last 16 bytes of the payload is the
UUID of a service.

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

28/41 DocID027636 Rev 3

3.5.3.6 Get characteristics supported by BLE peripheral device
The server device supports a number of GATT characteristics and the BlueNRG/BlueNRG-
MS GUI can obtain this information by issuing the command
BLUEHCI_GATT_DISC_ALL_CHARAC_OF_A_SERVICE. Once the command is issued
the server responds with EVT_BLUE_ATT_READ_BY_TYPE_RESP for each
characteristic supported by the server.

Each response includes the connection handle, the length of the response, the data length,
the handle-value pair and the UUID of the characteristic. They are indicated below in the
figure below.

Figure 12: Discover all supported characteristics

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 29/41

3.5.3.7 Read characteristic value
To read a particular characteristic on the server, the command
BLUEHCI_GATT_READ_CHARACTERISTIC_VAL can be used. In this command we have
to provide two parameters: the attribute handle of the characteristic we are reading and the
connection handle. From the previous sections we already know the connection handle
value which is “0x0801” in this case. The attribute handle would be the handle of the
characteristic handle plus one since the "value" handle of this characteristic lies at offset
one from the characteristic handle. Please note that the time characteristic has only one
attribute which is a "readable" attribute of the time value. In this case this handle is
"0x22+1" or 0x23.

Figure 13: Reading data from time characteristic

The value of the time characteristic is available in the response from the server
EVT_BLUE_ATT_READ_RESP. The value in this case is the 4 bytes at the end of the
payload.

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

30/41 DocID027636 Rev 3

3.5.3.8 Write characteristic value
To read a particular characteristic on the server, the command
BLUEHCI_GATT_WRITE_WITHOUT_RESPONSE can be used. In this command we have
to provide four parameters: the attribute handle of the characteristic we are reading, the
connection handle, the data length and the data value to write. From the previous sections
we already know that the connection handle value is "0x0801" in this case. The attribute
handle would be the handle of the characteristic handle plus one since the "value" handle
of this characteristic lies at offset one from the characteristic handle. Please note that the
"LED button" characteristic has only one attribute which is a "writable" attribute of the "LED
button" value.

As explained in Section 3.5.1: "Time service", by writing data to this characteristic we can
toggle the LED2 present on the "peripheral device" and hence when we perform the
BLUEHCI_GATT_WRITE_WITHOUT_RESPONSE command, the LED2 should be
switched ON/OFF alternately.

Figure 14: Writing data to LED button time characteristic

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 31/41

3.5.3.9 Obtain notification for a characteristic
To enable notifications for notifiable characteristics (i.e. characteristics which have
CHAR_PROP_NOTIFY property), BLUEHCI_GATT_WRITE_CHARAC_DESCRIPTOR
command can be used. This command can be used to write a descriptor to an attribute. We
must set correct values of attribute handle, and configuration data while using this
command. For enabling notification, the configuration data is {0x00, 0x01}. In this case,
handle of the attribute for "Minutes characteristic" lies at offset two from the characteristic
handle.

Figure 15: Enabling notifications from server

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

32/41 DocID027636 Rev 3

3.5.3.10 Disconnecting from remote device
To disconnect the peripheral device from the central device, BLUEHCI_GAP_TERMINATE
command can be used as shown below:

Figure 16: Disconnecting the peripheral device

3.5.4 Adding security to sample application
In this section we show a slight modification of the sample application code in order to
protect one characteristic and describe the proper way to perform the pairing from the
BlueNRG/BlueNRG-MS GUI in order to gain the authorization to access it.

3.5.4.1 Protecting the characteristic
In order to add read protection to a characteristic it is enough to modify the secPermissions
flag of the call to aci_gatt_add_char. The example below show how to set up the Time
service seconds characteristic with a protection requiring an authenticated pairing and that
will guarantee the data exchange will be encrypted.

 ret = aci_gatt_add_char(timeServHandle, UUID_TYPE_128, uuid, 4,
CHAR_PROP_READ, ATTR_PERMISSION_ENCRY_READ | ATTR_PERMISSION_AUTHEN_READ, 0, 16, 0,
&secondsCharHandle);

If the GATT client will try to read this characteristic without having performed an
authenticated pairing, the reading will return an error.

3.5.4.2 Performing the pairing
In order to perform the paring with the BlueNRG/BlueNRG-MS GUI the user should first
declare its I/O capabilities, after having initialized the USB dongle as done in Section
3.5.3.2: "Initializing the USB dongle", with the command
BLUEHCI_GAP_SET_IO_CAPABILITY as depicted in the figure below, where the selected
capability is IO_CAP_KEYBOARD_DISPLAY as on the PC running the BlueNRG GUI
there is both a keyboard and a display.

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

 DocID027636 Rev 3 33/41

Figure 17: Setting the device I/O capabilities

Apart from the I/O capabilities the user needs to configure the parameters for the pairing.
This is achieved through the command BLUEHCI_GAP_SET_AUTH_REQUIREMENT as
shown in the figure below.

To match with the code of the sample application we set man-in-the-middle protection,
OOB disabled, and configured a fixed PIN of value 123456 (0x1E240).

Figure 18: Setting the pairing parameters

X-CUBE-BLE1 software, expansion for
STM32Cube

UM1873

34/41 DocID027636 Rev 3

After this operation, and after a connection has been set up as described in Section
3.5.3.4: "Connecting to BLE peripheral device", the user can start the pairing procedure
with the command BLUEHCI_GAP_SEND_PAIRING_REQUEST which will result in an
HCI_ENCRYPTION_CHANGE and in an event EVT_BLUE_GAP_PAIRING_CMPL
indicating the result of the pairing. This procedure is depicted in the figure below.

Figure 19: Pairing with the device

After a successful pairing it is now possible to proceed to reading the protected
characteristic with the normal procedure described in Section 3.5.3.7: "Read characteristic
value".

UM1873 System setup guide

 DocID027636 Rev 3 35/41

4 System setup guide

4.1 Hardware description
This section describes the hardware components needed for developing a sensor-based
application.

The following sub-sections describe the individual components.

4.1.1 STM32 Nucleo platform
The STM32 Nucleo boards provide an affordable and flexible way for users to try out new
ideas and build prototypes with any STM32 microcontroller line. The ArduinoTM connectivity
support and ST Morpho headers make it easy to expand the functionality of the STM32
Nucleo open development platform with a wide choice of specialized expansion boards.
The STM32 Nucleo board does not require any separate probes as it integrates the ST-
LINK/V2-1 debugger/programmer. The board comes with the comprehensive STM32 HAL
software library together with various packaged software examples.

Information regarding the STM32 Nucleo board is available on st.com at:
http://www.st.com/stm32nucleo

Figure 20: STM32 Nucleo board

4.1.2 BlueNRG/BlueNRG-MS expansion board
The X-NUCLEO-IDB04A1 and X-NUCLEO-IDB05A1 expansion boards are compatible with
the STM32 Nucleo boards. They each contain a BlueNRG/BlueNRG-MS component, which
is a BLE single-mode network processor, compliant with Bluetooth specification v4.0 and
v4.1 respectively. The BlueNRG/BlueNRG-MS can act as master or slave. The entire
Bluetooth Low Energy stack runs on the embedded Cortex M0 core. The
BlueNRG/BlueNRG-MS offers the option of interfacing with external microcontrollers using
SPI transport layer.

System setup guide UM1873

36/41 DocID027636 Rev 3

Figure 21: BlueNRG and BlueNRG-MS expansion boards connected to STM32 Nucleo board

The documentation related to X-NUCLEO-IDB04A1 and X-NUCLEO-IDB05A1 is available
on www.st.com.

4.1.3 BlueNRG USB dongle
The STEVAL-IDB003V1 is an evaluation board based on BlueNRG, a low power Bluetooth
Smart IC, compliant with the Bluetooth 4.0 specifications and supporting both master and
slave roles.

The STEVAL-IDB003V1 has a USB connector for PC GUI interaction and firmware update.

USB dongle use is optional.

Figure 22: STEVAL-IDB003V1 BlueNRG USB dongle

The STEVAL-IDB003V1 evaluation board firmware and related documentation is available
on www.st.com

UM1873 System setup guide

 DocID027636 Rev 3 37/41

4.2 Software description
The following software components are needed in order to setup the suitable development
environment for creating applications for the STM32 Nucleo equipped with the
BlueNRG/BlueNRG-MS expansion board:

• X-CUBE-BLE1: an expansion for STM32Cube dedicated to Bluetooth Low Energy
applications development. The X-CUBE-BLE1 firmware and related documentation is
available on www.st.com.

• Development toolchain and compiler: The STM32Cube expansion software supports
the three following environments:
− IAR Embedded Workbench for ARM® (EWARM) toolchain + ST-LINK/V2
− RealView Microcontroller Development Kit (MDK-ARM) toolchain + ST-LINK/V2
− System Workbench for STM32 + ST-LINK/V2

4.3 Hardware and software setup
This section describes the hardware and software setup procedures. It also describes the
system setup needed for the above.

4.3.1 Hardware setup
To develop a BLE application, the following hardware is needed:

1. One STM32 Nucleo development platform
2. One BlueNRG/BlueNRG-MS expansion board (order code: X-NUCLEO-IDB04A1 or

X-NUCLEO-IDB05A1)
3. One USB type A to Mini-B USB cable to connect the Nucleo to the PC
4. One BlueNRG USB dongle (order code: STEVAL-IDB003V1)

The BlueNRG USB dongle is not mandatory but is useful for testing BLE applications
running on the Nucleo platform. If you don't want to use the USB dongle, as an alternative,
you can replace it with the following additional hardware:

1. One STM32 Nucleo Development platform
2. One BlueNRG/BlueNRG-MS expansion board (order code: X-NUCLEO-IDB04A1 or

X-NUCLEO-IDB05A1)
3. One USB type A to Mini-B USB cable to connect the Nucleo to the PC
4. One USB type A to Mini-B USB cable to connect the Nucleo to the PC

4.3.2 Software setup
This section lists the minimum requirements for the developer to setup the software
environment, run the sample testing scenario based on the GUI utility and customize
applications.

• Development toolchains and compilers: Please select one of the integrated
development environments supported by the STM32Cube expansion software. Please
read the system requirements and setup information provided by the selected IDE
provider.

• GUI utility: The BlueNRG/BlueNRG-MS GUI utility has following minimum
requirements:
− PC with Intel or AMD processor running one of following Microsoft operating

system: Win XP SP3 Vista/7
− At least 128 MBs of RAM
− 2 X USB ports
− 40 MB of hard disk space

System setup guide UM1873

38/41 DocID027636 Rev 3

4.3.3 System setup guide
This section describes how to setup different hardware parts before writing and executing
an application on the STM32 Nucleo board with BlueNRG/BlueNRG-MS expansion board.

4.3.3.1 BlueNRG USB dongle setup
The BlueNRG USB dongle allows to easily add BLE functionalities to a user PC by just
plugging it on a PC USB port. The USB dongle can be used as a simple interface between
the BlueNRG/BlueNRG-MS device and a GUI application on the PC. The on board STM32
microcontroller can also be programmed, so the board can be used to develop applications
that need to use BlueNRG/BlueNRG-MS. The board can be powered through the USB
connector, which can also be used for I/O interaction with a USB Host. The board has also
two buttons and two LEDs for user interaction.

The reader can refer to user manual UM1686, available on www.st.com, for more details.

4.3.3.2 BlueNRG/BlueNRG-MS GUI setup
The BlueNRG/BlueNRG-MS GUI included in the software package is a graphical user
interface that can be used to interact and evaluate the capabilities of the remote
BlueNRG/BlueNRG-MS network processor through the local BlueNRG USB dongle.

This utility can send standard and vendor-specific HCI commands to the controller and
receive events from it. It lets the user configure each field of the HCI command packets to
be sent and analyzes all received packets. In this way BlueNRG/BlueNRG-MS can be
easily managed at low level.

In order to use the BlueNRG/BlueNRG-MS GUI, make sure you have correctly set up your
hardware and software (BlueNRG/BlueNRG-MS GUI installed) according to the
requirements described in UM1686.

4.3.3.3 STM32 Nucleo and BlueNRG/BlueNRG-MS expansion board setup
The STM32 Nucleo development motherboard allows the exploitation of the BLE
capabilities provided by the BlueNRG/BlueNRG-MS network processor.

The Nucleo board integrates the ST-LINK/V2-1 debugger/programmer. The developer can
download the relevant version of the ST-LINK/V2-1 USB driver by searching STSW-
LINK009 on www.st.com (according to the MS Windows OS).

The X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1 BlueNRG/BlueNRG-MS expansion
boards can be easily connected to the Nucleo motherboard through the Arduino UNO R3
extension connector, and are capable of interfacing with the external STM32
microcontroller on the STM32 Nucleo board using the SPI transport layer.

UM1873 References

 DocID027636 Rev 3 39/41

5 References
1. UM1755: BlueNRG Bluetooth® LE stack application command interface (ACI)
2. UM1686: BlueNRG development kits

Revision history UM1873

40/41 DocID027636 Rev 3

6 Revision history
Table 2: Document revision history

Date Revision Changes

27-Aug-2015 1 Initial release.

30-Jan-2017 2

Updated Introduction, Section 2: "What is
STM32Cube?", Figure 5: "STM32 Nucleo + BlueNRG/
BlueNRG-MS expansion board software architecture",
Section 3.3: "Folder structure", Section 3.5:
"SensorDemo application description", Section 3.5.3:
"Testing the application", Section 4.2: "Software
description", Section 4.3.3.3: "STM32 Nucleo and
BlueNRG/BlueNRG-MS expansion board setup".
Added BlueNRG-MS references throughout document.

14-Feb-2017 3

Updated How does this software complement
STM32Cube?, Figure 6: "X-CUBE-BLE1 package
folder structure"and Section 3.5: "SensorDemo
application description".

UM1873

 DocID027636 Rev 3 41/41

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 Acronyms and abbreviations
	2 What is STM32Cube?
	2.1 STM32Cube architecture

	3 X-CUBE-BLE1 software, expansion for STM32Cube
	3.1 Overview
	3.1.1 Bluetooth Low Energy
	3.1.2 Bluetooth operating modes
	3.1.3 Bluetooth Low Energy software partitioning
	3.1.4 Profiles and services
	3.1.5 Bluetooth Low Energy state machine

	3.2 Architecture
	3.3 Folder structure
	3.4 Guide for writing applications
	3.4.1 APIs
	3.4.2 Initialization
	3.4.2.1 Initializing STM32 Cube HAL
	3.4.2.2 Initializing Nucleo board peripherals
	3.4.2.3 Initializing BlueNRG HAL and HCI
	3.4.2.4 Initialization and services characteristics

	3.4.3 Security requirements
	3.4.4 Connectable mode
	3.4.5 Connection with central device

	3.5 SensorDemo application description
	3.5.1 Time service
	3.5.1.1 Adding Time service
	3.5.1.2 Update and notify characteristic value

	3.5.2 LED service
	3.5.2.1 Adding GATT service and characteristics
	3.5.2.2 Obtaining characteristics value

	3.5.3 Testing the application
	3.5.3.1 Testing SensorDemo application using BlueNRG/BlueNRG-MS GUI
	3.5.3.2 Initializing the USB dongle
	3.5.3.3 Scanning for BLE peripheral device
	3.5.3.4 Connecting to BLE peripheral device
	3.5.3.5 Get services supported by BLE peripheral device
	3.5.3.6 Get characteristics supported by BLE peripheral device
	3.5.3.7 Read characteristic value
	3.5.3.8 Write characteristic value
	3.5.3.9 Obtain notification for a characteristic
	3.5.3.10 Disconnecting from remote device

	3.5.4 Adding security to sample application
	3.5.4.1 Protecting the characteristic
	3.5.4.2 Performing the pairing

	4 System setup guide
	4.1 Hardware description
	4.1.1 STM32 Nucleo platform
	4.1.2 BlueNRG/BlueNRG-MS expansion board
	4.1.3 BlueNRG USB dongle

	4.2 Software description
	4.3 Hardware and software setup
	4.3.1 Hardware setup
	4.3.2 Software setup
	4.3.3 System setup guide
	4.3.3.1 BlueNRG USB dongle setup
	4.3.3.2 BlueNRG/BlueNRG-MS GUI setup
	4.3.3.3 STM32 Nucleo and BlueNRG/BlueNRG-MS expansion board setup

	5 References
	6 Revision history

