f- UM1873
’ life.augmented User manual

Getting started with the X-CUBE-BLE1 Bluetooth Low Energy
software expansion for STM32Cube

Introduction

The X-CUBE-BLE1 is an expansion software package for STM32Cube. The software runs on the
STMS32 and includes drivers for ST’s BlueNRG / BlueNRG-MS Bluetooth Low Energy device. The
expansion is built on STM32Cube software technology to ease portability across different STM32
microcontrollers. The software comes with sample implementations of the drivers running on the
X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1, when connected to a NUCLEO-L053RS,
NUCLEO-L476RG, NUCLEO-F401RE or NUCLEO-F411RE board.

February 2017 DocID027636 Rev 3 1/41

www.st.com

Contents Um1873

Contents

1 Acronyms and abbreviationsccccoiiiic s 6
2 What is STM32CUDE? ... et e r e e e e e e 7
21 STM32Cube architecture ... 8

3 X-CUBE-BLE1 software, expansion for STM32Cube 10
3.1 OVEIVIEW ...ttt 10

3.1.1 Bluetooth LOW ENergy ... 10

3.1.2 Bluetooth operating modes ... 10

3.1.3 Bluetooth Low Energy software partitioningcccocoeeiiiennnnn 10

3.14 Profiles and SErviCeScocoiiiiiiiie it 11

3.1.5 Bluetooth Low Energy state machine.............cccccccovviiiiiiiiiiiiiiinnnns 13

3.2 ATCNIECIUIE ... eneannnnees 13

3.3 Folder StruCTUIe 15

3.4 Guide for writing applicationsouiiiiiiiiiiiec e, 15

3.4.1 APILS Lot 15

3.4.2 INitialiZation ... 16

3.4.3 SEeCUrity reqQUIrEMENTS.....cciiii i 17

3.44 Connectable MOEcueiiiiiiiiie e 17

3.4.5 Connection with central device...........cooooiiiiiiiii 17

3.5 SensorDemo application description.............cccceeiiiiiiiiiiiiiiiieeeeeee, 18

3.5.1 B0 =T T= T (o S 18

3.5.2 LED SEIVICE oeieiieeee ettt a e 21

3.5.3 Testing the application...........ooovviviieiii 23

3.54 Adding security to sample applicationccccccevveiviiiiiiiiiiiiiiiieeene, 32

4 System setup guide.........coeeiriciiiicr - 35
4.1 Hardware descriptionooouviiiiiiiiiiee e 35

411 STM32 Nucleo platform.........ccccuviiiiiiee e 35

4.1.2 BlueNRG/BlueNRG-MS expansion board............ccccccveeiiiiiciieenn... 35

4.1.3 BIUENRG USB dONglecooiiiiiiiiiiie e 36

4.2 Software desCription........... oo 37

4.3 Hardware and software setupcoeeeiiiiiiiiiiiiiieeeeeeeeeee 37

4.3.1 Hardware SEIUDuueeeiiiiiiiiiiieeee e 37

4.3.2 SOftWAre SELUPei i 37

4.3.3 System setup QUIAEoc.eeiiiii 38

5 ReferenCes ... e 39

2/41 DocID027636 Rev 3 "l

UM1873

Contents

6 Revision history

3

DocID027636 Rev 3 3/41

List of tables

UM1873

List of tables

Table 1: Acronyms and abbreviations

Table 2: Document revision history

4/41

3

DocID027636 Rev 3

UM1873

List of figures

List of figures

Figure 1: FIrmware arChiteCIUIeooo e 8
Figure 2: Bluetooth LE protoCol StaCK........cccooeioieiee e 10
Figure 3: Structure of a GATT-based Profilecc.uuveiiiiiiiie e 12
Figure 4: BLE state MacChineccoooiiiii s ssnnnnnnnnnnnnnnnnn 13
Figure 5: STM32 Nucleo + BlueNRG/ BlueNRG-MS expansion board software architecture.................. 14
Figure 6: X-CUBE-BLE1 package folder StrUCIUIEocccuiiiiiie et a e 15
Figure 7: Hardware COmMPONENTS SEIUP....ccio oo s 23
Figure 8: Initializing the USB dONGIe..........ooiiiiii et e e 24
Figure 9: SCanNiNg fOr EVICESuiiiiiiiiii e e 25
Figure 10: Create CONNECHION ...t nr e e e 26
Figure 11: Discover all SUPPOrEA SEIVICESeei i e ee et e e e ie e e e e e e e et e e e e e e e e e e nneeeeeeaeeeaaennnes 27
Figure 12: Discover all supported charaCteristiCscouiiii i 28
Figure 13: Reading data from time characteristiC.............cooiiiiiiiiii e 29
Figure 14: Writing data to LED button time characteristiCcooooiooioeieiii e 30
Figure 15: Enabling notifications from SEIVETuiiiiiii e e 31
Figure 16: Disconnecting the peripheral deViCeccooooiiiiiiiiiie e 32
Figure 17: Setting the device 1/O capabilitiesc..ueeiiiiiiiicee e 33
Figure 18: Setting the pairing PAramMEterscoocuiiiiie e e 33
Figure 19: Pairing With the deVICe.........oouiiiiii e e 34
Figure 20: STM32 NUCIEO DOAIM.ccoiiuiiiiiiiiie et 35
Figure 21: BlueNRG and BlueNRG-MS expansion boards connected to STM32 Nucleo board.............. 36
Figure 22: STEVAL-IDB003V1 BIUENRG USB dONgIe.......ccocuiiiiiiiiiec ettt 36
‘Yl DoclD027636 Rev 3 5/41

Acronyms and abbreviations

UM1873

1

6/41

Acronyms and abbreviations

Table 1: Acronyms and abbreviations

Term Description

ACI Application controller interface
ANCS Apple notification center service
ATT Attribute protocol

BLE Bluetooth Low Energy

BSP Board support package

BT Bluetooth

GAP Generic access profile
GATT Generic attribute profile

GUI Graphical user interface

HAL Hardware abstraction layer

HCI Host controller interface

HRS Heart rate sensor

IDE Integrated development environment
L2CAP Logical link control and adaptation protocol

LED Light emitting diode

LL Link layer

LPM Low power manager

MCU Micro controller unit

PCI Profile command interface

PHY Physical layer

SIG Special interest group

SM Security manager

SPI Serial peripheral interface
uUuiD Universally unique identifier

DocID027636 Rev 3

3

UM1873

What is STM32Cube?

2

3

What is STM32Cube?
What is STM32Cube?

STMCube™ represents an original initiative by STMicroelectronics to ease developers' life
by reducing development effort, time and cost. STM32Cube covers the STM32 portfolio.
Version 1.x of STM32Cube includes:

e STM32CubeMX, a graphical software configuration tool that allows the generation of
C initialization code using graphical wizards.
e A comprehensive embedded software platform, delivered per series (such as the
STM32CubeF4 for STM32F4 series).
— STM32Cube HAL, an STM32 abstraction layer embedded software, ensuring
maximized portability across the STM32 portfolio
— A consistent set of middleware components, such as RTOS, USB, TCP/IP,
graphics
— All embedded software utilities, including a full set of examples

How does this software complement STM32Cube?

The proposed software is based on the STM32CubeHAL, the hardware abstraction layer
for the STM32 microcontroller. The package extends STM32Cube by providing a board
support package (BSP) for the BlueNRG/BlueNRG-MS expansion board and some
middleware components for communication with other Bluetooth LE devices. BlueNRG-MS
is a very low power Bluetooth Low Energy (BLE) single-mode network processor, compliant
with Bluetooth specifications core 4.0/4.1. The drivers abstract low-level details of the
hardware and allow the middleware components and applications to access the
BlueNRG/BlueNRG-MS device in a hardware-independent fashion. The software
implements low power optimizations to allow system power consumption of a few micro-
amps.

The package includes different sample applications and provides support for many
standard profiles and for Apple Notification Center Service (ANCS).

Slave profiles (peripheral role):

Alert Notification Service

Blood Pressure Service

Find Me Target

Glucose Service

Health Thermometer Service

Heart Rate Service

Human Interface Device Service (not supported by STM32 Nucleo-L0O53R8)
Proximity Reporter

Time Server

Master profiles (central role):

Alert Notification Client

Blood Pressure Collector

Find Me Locator

Glucose Collector

Health Thermometer Collector
Heart Rate Collector

Time Client

DocID027636 Rev 3 7/41

What is STM32Cube? UM1873

21 STM32Cube architecture

The STM32Cube firmware solution is based on three independent levels that freely interact
with each other, as shown below:

Figure 1: Firmware architecture

Level 2 | Eval Board and Discovery Kit demonstration

Applications
Level 1 -

Library and protocol based components
(FatFS, FreeRTOS, USB Host, USB Device, Ethernet...)

Level O

BSP Drivers

HAL Peripheral Drivers

-

Low level Driver Core (opt.)

Level 0 is divided into three sub-layers:

e The board support package (BSP) layer offers a set of board hardware APls (audio
codec, 10 expander, touchscreen, SRAM driver, LCD drivers, etc.) based on modular
architecture which can be rendered compatible with any hardware by simply running
the low-level routines. The BSP has two parts:

— component: the driver associated with the external device on the board (not the
STM32); the component driver provides specific APIs to the BSP driver external
components and can be ported to any other board.

— BSP driver: links the component driver to a specific board and provides a set of
user-friendly APIs. The naming rule of the APIs is BSP_FUNCT_Action(): ex.
BSP_LED_Init(), BSP_LED_On().

e The hardware abstraction layer (HAL) provides the low level drivers and the hardware
interfacing methods to interact with the upper layers (application, libraries and stacks).
It provides generic, multi-instance and function-oriented APIs which render user
applications unnecessary by providing ready to use processes. For example, it
provides APls for the communication peripherals (I12S, UART, etc.) for initialization and
configuration, data transfer management based on polling, interrupts or DMA
processes, and management of any communication errors. There are two types of
HAL driver APls:

— generic APIs which provide common and generic functions to the entire STM32
series.

— extension APIs which provide specific, customized functions for a particualr
family or a certain part number.

8/41 DocID027636 Rev 3 "l

UM1873

What is STM32Cube?

3

e Basic peripheral usage examples: this layer includes the examples built for the STM32
peripheral using the HAL and BSP resources only.

Level 1 is divided into two sub-layers:

o Middleware components: a set of libraries covering USB host and device libraries
STemWin, FreeRTOS, FatFS, LwIP, and PolarSSL. Horizontal interaction between
layer components is handled directly by calling the feature APls, while vertical
interaction with the low level drivers is managed through specific callbacks and static
macros implemented in the library system call interface. For example, the FatFs
accesses the microSD drive or the USB mass storage class via the disk 1/O driver.

o Middleware examples (or applications) for individual components as well as
integration examples across several middleware components are provided.

Level 2 is a single layer providing a global, real-time and graphical demonstration based on
the middleware service layer, the low-level abstraction layer and basic peripheral usage
applications involving board functions.

DocID027636 Rev 3 9/41

X-CUBE-BLE1 software, expansion for UM1873

STM32Cube

3
3.1

3.1.1

3.1.2

313

10/41

X-CUBE-BLE1 software, expansion for STM32Cube

Overview

X-CUBE-BLE1 is a software package that expands the functionality provided by
STM32Cube and provides the Bluetooth Low Energy connectivity.

Bluetooth Low Energy

Bluetooth Low Energy is a wireless personal area network technology designed and
marketed by the Bluetooth SIG. It can be used for developing new innovative applications
in fithess, security, healthcare, etc. using devices which run on coin cell batteries, and can
remain operative for “months or years” without draining the battery.

Bluetooth operating modes

According to the Bluetooth standard specification version 4.0, Bluetooth Classic and
Bluetooth Low Energy can both be supported on the same device, in which case it is called
a "dual-mode" device. Dual mode devices are also called "Bluetooth smart ready".

A single-mode device is one which supports only the BLE protocol. Single mode devices

are called "Bluetooth smart".

Bluetooth Low Energy software partitioning

The BLE protocol stack and a small description of each layer are presented below:
Figure 2: Bluetooth LE protocol stack

APPLICATION & BLE

PROFILES

/ LE STACK

.

BLE PHY
Host Controller Interface

PHY layer

3

DocID027636 Rev 3

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3.1.4

3

A typical BLE system consists of an LE controller and a host. The LE controller consists of
a physical layer (PHY) including the radio, a link layer (LL) and a standard host controller
interface (HCI). The host consists of an HCI and other higher protocol layers, e.g. L2CAP,
SM, ATT/GATT and GAP.

The host can send HCI commands to control the LE controller. The HCI interface and the
HCI commands are standardized by the Bluetooth core specification. Please refer to the
official document for more information.

PHY layer insures communication with stack and data (bits) transmission over the air. BLE
operates in the 2.4 GHz Industrial Scientific Medical (ISM) band and defines 40 radio
frequency (RF) channels with 2 MHz channel spacing.

In BLE, when a device only needs to broadcast data, it transmits the data in advertising
packets through the advertising channels. Any device that transmits advertising packets is
called an advertiser. Devices that only aim at receiving data through the advertising
channels are called scanners. Bidirectional data communication between two devices
requires them to connect to each other. BLE defines two device roles at the link layer (LL)
for a created connection: the master and the slave. These are the devices that act as
initiator and advertiser during the connection creation, respectively.

The host controller interface (HCI) layer provides a standardized interface to enable
communication between the host and controller. In BlueNRG, this layer is implemented
through the SPI hardware interface.

In BLE, the main goal of L2CAP is to multiplex the data of three higher layer protocols,
ATT, SMP and link layer control signaling, on top of a link layer connection.

The SM layer is responsible for pairing and key distribution, and enables secure connection
and data exchange with another device.

At the highest level of the core BLE stack, the GAP specifies device roles, modes and
procedures for the discovery of devices and services, the management of connection
establishment and security. In addition, GAP handles the initiation of security features. The
BLE GAP defines four roles with specific requirements on the underlying controller:
Broadcaster, Observer, Peripheral and Central.

The ATT protocol allows a device to expose certain pieces of data, known as "attributes”,
to another device. The ATT defines the communication between two devices playing the
roles of server and client, respectively, on top of a dedicated L2CAP channel. The server
maintains a set of attributes. An attribute is a data structure that stores the information
managed by the GATT, the protocol that operates on top of the ATT. The client or server
role is determined by the GATT, and is independent of the slave or master role.

The GATT defines a framework that uses the ATT for the discovery of services, and the
exchange of characteristics from one device to another. GATT specifies the structure of
profiles. In BLE, all pieces of data that are being used by a profile or service are called

"characteristics". A characteristic is a set of data which includes a value and properties.

Profiles and services

The BLE protocol stack is used by the applications through its GAP and GATT profiles. The
GAP profile is used to initialize the stack and setup the connection with other devices. The
GATT profile is a way of specifying the transmission - sending and receiving - of short
pieces of data known as ‘attributes’ over a Bluetooth smart link. All current Low Energy
application profiles are based on GATT. The GATT profile allows the creation of profiles
and services within these application profiles. Here is a depiction of how the data services
are setup in a typical GATT server.

DocID027636 Rev 3 11/41

X-CUBE-BLE1 software, expansion for UM1873
STM32Cube
Figure 3: Structure of a GATT-based profile
Profile Service Characteristic
collection of collection of temperature value
services characteristics
Temperature measurement
Health thermometer service
[UU|DZ 1809) Handle : 1
Health thermometer profile UUID: 2803 (dectaration)
Temperature measurement — &:;3 o
- (UUID: 2A1C) Data Handle: 2
GAP service Mandatory Dota Pn:pz':nes inm:m-
(UUID: 1800)
Temperature type
(UUID: 2A10) = Handie 2
Optional uuip: ZAiCéa;r-!Bme wvalue)
Health thermometer - Flags: <vintg>
= Intermediate temperature Measurement value:<float>
service {UUID: 2A1€) Time stamp: <date_time>
(UU|D: 1309, Optional Temperature type: <temperature_type>
o . Measurement interval
Device information \ (UUID: 2A21) Handle: 3
service Optional wUD: 2503
. Client characteristics configuration
(UUID:180A) T

In this example, the profile above is created with three services:

e GAP Service, which is always mandatory to be setup
° Health thermometer service
° Device information service

Each service consists of a set of characteristics which define the service and the type of
data it provides as part of the service. In the above example, the health thermometer
service contains the following characteristics:

Temperature measurement
Temperature type
Intermediate temperature
Measurement interval

Each of the above characteristics details a type of data and the value of the data. The
characteristics are defined by "attributes" which define the value of that characteristic.

Each characteristic has at least two attributes: the main attribute (0x2803) and a value
attribute that actually contains the data. The main attribute defines the value attribute's
handle and UUID which allows any client reading the attribute to know which handle to
read to access the value attribute.

3

DocID027636 Rev 3

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube
3.1.5 Bluetooth Low Energy state machine
Figure 4: BLE state machine
Advertising

The above diagram describes the state machine during BLE operations. The following

provides an explanation of each of the states:

e Standby: Does not transmit or receive packets.

e Advertising: Broadcasts advertisements in advertising channels. The device is
transmitting advertising channel packets and possibly listening to and responding to
responses triggered by these advertising channel packets.

e Scanning: Looks for advertisers. The device is listening for advertising channel
packets from devices that are advertising.

o |Initiating: The device initiates connection to the advertiser and is listening for
advertising channel packets from a specific device(s) and responding to these packets
to initiate a connection with another device.

e Connection: Connection has been made and the device is transmitting or receiving.

— Initiator device will be in master role: it communicates with the device in the slave
role, defines timings of transmissions.
— Advertiser device will be in slave role: it communicates with single device in
master role.
3.2 Architecture

3

This software is an expansion for STM32Cube, as such it fully complies with the
architecture of STM32Cube and it expands it in order to enable development of
applications accessing and using BlueNRG/BlueNRG-MS stack. Please see the previous
section for an introduction to the STM32Cube architecture.

DocID027636 Rev 3 13/41

X-CUBE-BLE1 software, expansion for UM1873
STM32Cube

14/41

The software is based on the STM32CubeHAL, the hardware abstraction layer for the
STM32 microcontroller. The package extends STM32Cube by providing a board support
package (BSP) for the BlueNRG/BlueNRG-MS expansion board and some middleware
components for serial communication with a PC.

The software layers used by the application software to access and use the
BlueNRG/BlueNRG-MS expansion board are the following:

e STM32Cube HAL layer: The HAL driver layer provides a generic multi instance simple
set of APIs (application programming interfaces) to interact with the upper layers
(application, libraries and stacks). It is composed of generic and extension APls. It is
directly built around a generic architecture and allows the layers that are built upon,
such as the middleware layer, to implement their functionalities without dependencies
on the specific hardware configuration for a given microcontroller unit (MCU). This
structure improves the library code reusability and guarantees an easy portability on
other devices.

e Board support package (BSP) layer: The software package needs to support the
peripherals on the STM32 Nucleo board apart from the MCU. This software is
included in the board support package (BSP). This is a limited set of APIs which
provides a programming interface for certain board specific peripherals, e.g. the LED,
the user button, etc. This interface also helps in identifying the specific board version.
For the BlueNRG/BlueNRG-MS expansion board, it provides support for Bluetooth
Low Energy connectivity.

The figure below outlines the software architecture of the package:
Figure 5: STM32 Nucleo + BlueNRG/ BlueNRG-MS expansion board software architecture

- \ 4 o
Sample Applications

\ Applications 5/

a ™

\ Middleware)

\ / Drivers

HW Components

STM32 Nucleo Board X-NUCLEO-IDB04A1 _t)r X-NUCLEO-IDB05A1
Expansion Board

Development Boards

3

DocID027636 Rev 3

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

3.3 Folder structure
This section provides an overview of the package folder structure.

The figure below shows the architecture of the package.
Figure 6: X-CUBE-BLE1 package folder structure

_htmresc
Documentation
Drivers
Middlewares
Projects
Utilities

| readme.txt

2 | Release_Notes.html

The following folders are included in the software package:

o The Documentation folder contains a compiled HTML file generated from the source
code and documentating in details the software components and APls.

e The Drivers folder contains the HAL drivers, the board specific drivers for each
supported board or hardware platform, including the on-board components ones and
the CMSIS layer which is a vendor-independent hardware abstraction layer for the
Cortex-M processor series.

e The Middlewares folder contains libraries and protocols related to host software and
applications to interface the BlueNRG/BlueNRG-MS controller.

e The Projects folder contains a sub-folder called "Multi" including BLE applications (in
the Applications folder)

e The Utilities folder contains a "FlashUpdaterTool" subfolder with a Java-based
graphical tool allowing the user to upgrade the firmware of the BlueNRG/BlueNRG-MS
expansion board. Notice that this is a preliminary and required step to test the
Applications listed above. The relevant readme file provides more in depth details
about the tool and its usage.

All the applications in the Projects folder are provided for the NUCLEO-LO53R8, NUCLEO-
L476RG, NUCLEO-F401RE or NUCLEO-F411RE platforms with three development
environments (IAR Embedded Workbench for ARM, RealView Microcontroller
Development Kit (MDK-ARM) and System Workbench for STM32.

3.4 Guide for writing applications

This section describes how to write a BLE application based on STM32 Nucleo board
equipped with BlueNRG/BlueNRG-MS expansion board, and add GATT services and
characteristics to it. Please refer to UM1686 "BlueNRG development kits" for seeing more
details about the ACI API referenced in this section.

3.41 APls
This section describes generic initialization and setup while writing BLE applications.

In this setup, the STM32 Nucleo board acts as GATT server (and as a peripheral device)
and the PC as a GATT client (and as a central device).

3

DocID027636 Rev 3 15/41

X-CUBE-BLE1 software, expansion for UM1873

STM32Cube

3.4.2

3.4.21

3.4.2.2

3.4.2.3

3.4.24

16/41

Detailed technical information about the APls available to the user can be found in a
compiled HTML file located inside the "Documentation" folder of the software package
where all the functions and parameters are fully described.

Initialization

Every application must to perform the basic initialization steps in order to configure and set
up the STM32 Nucleo with the BlueNRG/BlueNRG expansion board hardware and the
software stack for correct operation. This section describes the initialization steps required.

Initializing STM32 Cube HAL

The STM32Cube HAL library must be initialized so that the necessary hardware
components are correctly configured.

o HAL_Init();

This API initializes the HAL library. It configures Flash prefetch, Flash preread and Buffer
cache. It also configures the time base source, vectored interrupt controller and low-level
hardware.

Initializing Nucleo board peripherals

Some of the Nucleo on-board peripherals and hardware need to be configured before using
them (if they are used). The functions to do this are:

e BSP_LED_lInit(Led_TypeDef Led);

This API configures the LED on the Nucleo.

e BSP_PB_Init(Button_TypeDef Button, ButtonMode_TypeDef Button_Mode);

This API configures the user button in GPIO mode or in external interrupt (EXTI) mode.
e BSP_JOY_Init();

This API configures the joystick if the board is equipped with one.

Initializing BlueNRG HAL and HCI

The BlueNRG HAL provides the API and the functionality for performing operations related
to the BlueNRG/BlueNRG expansion board. This layer must be initialized so that STM32
CUBE HAL is configured properly for use with the BlueNRG/BlueNRG expansion board.

e BNRG_SPI_Init();

This API is used to initialize the SPI communication with the BlueNRG/BlueNRG expansion
board.

e HCI_Init();

This API initializes the host controller interface (HCI).

e BlueNRG_RST();

This API resets the BlueNRG/BlueNRG expansion board.

Initialization and services characteristics

BlueNRG's stack must be correctly initialized before establishing a connection with another
BLE device. This is done with the following two commands.

e aci_gap_init(uint8_t role, uint16_t* service_handle, uint16_t* dev_name_char_handle,
uint16_t* appearance_char_handle);

DoclD027636 Rev 3 ‘Yl

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3.4.3

3.4.4

3.4.5

3

This APl initializes BLE device for a particular role (peripheral, broadcaster, central device
etc.). The role is passed as first parameter to this API.

e aci_gatt add_serv(UUID_TYPE_128, service_uuid, PRIMARY_SERVICE, 7,
&servHandle);

This API adds a service on the GATT server device. Here service uuid is the 128-bit
private service UUID allocated for the service (primary service). This API returns the
service handle in servHandle.

Security requirements

The BlueNRG stack exposes an API that the GATT client application can use to specify its
security requirements. If a characteristic has security restrictions, a pairing procedure must
be initiated by the central device in order to access that characteristic. In the provided BLE
SensorDemo a fixed pin (123456) is used as follow:

e aci_gap_set auth_requirement(MITM_PROTECTION_REQUIRED,
OOB_AUTH_DATA_ABSENT, NULL, 7, 16, USE_FIXED_PIN_FOR_PAIRING,
123456, BONDING);

Connectable mode

On the GATT server device the following GAP ACI command is used to enter on general
discoverable mode:

e aci_gap_set_discoverable(ADV_IND, 0, 0, PUBLIC_ADDR, NO_WHITE_LIST_USE,8,
local_name, 0, NULL, 0, 0);

Connection with central device

Once the device used as GATT server is put in a discoverable mode, it can be seen by the
GATT client role device in order to create a BLE connection.

On GATT Client device the following GAP ACI command is used to connect with the GATT
server device in advertising mode:

e aci_gap_create_connection(0x4000, 0x4000, PUBLIC_ADDR, bdaddr,
PUBLIC_ADDR, 9, 9, 0, 60, 1000, 1000), where bdaddr is the peer address of the
GATT Client role device.

Once the two devices are connected the BLE communication will work as follows:

e On GATT server role device the following API should be invoked for updating
characteristic value:
— aci_gatt_update_char_value(chatServHandle, TXCharHandle, 0, len, (tHalUint8
*)data)

where data contains the value by which the attribute pointed to by the characteristic handle
TxCharHandle contained within the service chatServHandle, will be updated.

e On GATT client device, following API should be invoked for writing to a characteristic
handle:

— aci_gatt write_without_response(connection_handle, RX_HANDLE+1, len,
(tHalUint8 *)data)

where data is the value of the attribute pointed to by the attribute handle RX_HANDLE
contained in the connection handle connection_handle. connection_handle is the handle
returned on connection creation as parameter of the EVT_LE_CONN_COMPLETE event.

DocID027636 Rev 3 17/41

X-CUBE-BLE1 software, expansion for UM1873

STM32Cube

3.5

3.5.1

3.5.1.1

18/41

SensorDemo application description

This section describes various services and characteristics in the SensorDemo application,
one of the applicative examples included in the package.

The project files for the SensorDemo application can be found here:
$BASE_DIR\Projects\Multi\Applications\SensorDemo
In the SensorDemo application, the STM32 Nucleo device creates two services:

o Accelerometer service with the free-fall characteristic data and the directional
acceleration value characteristic in three directions (x, y, and z axis)
e Environmental Service with the following characteristics:
— Temperature data characteristic
— Pressure data characteristic
— Humidity data characteristic

Please note that there is no "real" environment sensor and accelerometer on the STM32
Nucleo board and the data being generated is "simulated" data.

The application creates services and characteristics using ACI APIs described in Section
3.4.1: "APIs" and then waits for a client (central device) to connect to it. It advertises its
services and characteristics to the listening client devices while waiting for a connection to
be made. After the connection is created by the central device, data is periodically updated.

This application also shows how to add new GATT services and characteristics. Setting the
NEW_SERVICES to 1 (in $PATH_TO_THIS_APPLICATION\Inc\sensor_service.h), two
new services are enabled: Time service and LED service.

Time service

Time service is the new service that will be added to the SensorDemo application. Time
service has the following two characteristics:

e Seconds characteristic: exposes the number of seconds passed since system boot.
This is a read only characteristic.

e Minutes characteristic: exposes the number of minutes passed since system boot.
This characteristic can be read by GATT server, and a "notify" event is generated for
this characteristic at one minute intervals.

Adding Time service

The following piece of code in sensor_service.c is adding "Time service" and its
corresponding characteristics to the SensorDemo application. As explained in Section
3.4.2.4: "Initialization and services characteristics" of this document, the
aci_gatt_add_serv() APl is used to add a service to the application, and the
aci_gatt_add_char()is used to add the characteristics. Please refer to UM1686: BlueNRG
development kits for details about these APIs. Please note that while adding "seconds
characteristic", it is marked as a characteristic supporting read operation by using
CHAR_PROP_READ argument. Similarly "minute characteristic" is marked as readable
and notifiable by using the CHAR_PROP_NOTIFY|CHAR_PROP_READ argument.

/**
* @brief Add a time service using a vendor specific profile
* @param None
* @Qretval Status
*/
tBleStatus Add Time Service (void)
{

3

DocID027636 Rev 3

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3

tBleStatus ret;
uint8 t uuid[16];

/* copy "Timer service UUID" defined above to 'uuid' local variable */
COPY TIME SERVICE UUID (uuid) ;

/*
* now add "Time service" to GATT server, service handle is returned
* via 'timeServHandle' parameter of aci gatt add serv() API.
* Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
* API description

*/

ret = aci gatt add serv(UUID TYPE 128, wuuid, PRIMARY SERVICE, 7,

&timeServHandle) ;
if (ret != BLE STATUS SUCCESS) goto fail;

now add "Seconds characteristic" to Time service, characteristic handle

is returned via 'secondsCharHandle' parameter of aci_gatt_add char() API.
This characteristic is read only, as specified by CHAR PROP READ parameter.
Please refer to 'BlueNRG Application Command Interface.pdf' for detailed

* API description

* % o ok ok

Y/
COPY TIME UUID (uuid);
ret = aci gatt add char(timeServHandle, UUID TYPE 128, uuid, 4,

CHAR PROP READ, ATTR PERMISSION NONE, O,
16, 0, &secondsCharHandle) ;
if (ret != BLE STATUS SUCCESS) goto fail;

COPY MINUTE UUID (uuid) ;

/*
* Add "Minutes characteristic" to "Time service".
* This characteristic is readable as well as notifiable only, as specified
* by CHAR PROP NOTIFY|CHAR PROP READ parameter below.

Y/
ret = aci gatt add char(timeServHandle, UUID TYPE 128, uuid, 4,
CHAR_PROP_NOTIFY|CHAR PROP READ, ATTR PERMISSION NONE, 0,
16, 0, &minuteCharHandle) ;
if (ret != BLE STATUS SUCCESS) goto fail;

PRINTF ("Service TIME added. Handle 0x%04X, TIME Charac handle:
0x%04X\n", timeServHandle, secondsCharHandle) ;
return BLE STATUS SUCCESS;

/* return BLE STATUS ERROR if we reach this tag */
fail:
PRINTF ("Error while adding Time service.\n");
return BLE STATUS ERROR ;
}

Finally, Add_Time_Service()function should be called from main() function defined in
main.c. The following code performs this task.

/* instantiate timer service with 2 characteristics:-
* 1. seconds characteristic: Readable only

* 2. Minutes characteristics: Readable and Notifiable
Y/

ret = Add Time_ Service();

if (ret == BLE_STATUS_SUCCESS)
PRINTF ("Time service added successfully.\n");
else

PRINTF ("Error while adding Time service.\n");

DocID027636 Rev 3 19/41

X-CUBE-BLE1 software, expansion for UM1873

STM32Cube

3.5.1.2

20/41

Update and notify characteristic value

Time service has "seconds characteristic" as a "readable" characteristic. Support for
updating this characteristic must be provided in this application. Seconds_Update()
function, defined below, performs this task.

/**
* @brief Update seconds characteristic value of Time service
* @param AxesRaw t structure containing acceleration value in mg
* @retval Status
*/
tBleStatus Seconds Update (void)
{
tHalUint32 val;
tBleStatus ret;

/* Obtain system tick value in milliseconds, and convert it to seconds. */
val = HAL GetTick();
val = val/1000;

/* create a time[] array to pass as last argument of aci gatt update char value ()
API*/
const tHalUint8 time[4] = {(val >> 24)&0xFF, (val >> 16)&0xFF, (val >> 8)&0xFF,
(val) &OxXFF};
/*
* Update value of "Seconds characteristic" using aci gatt update char value() API
* Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
* API description
=/
ret = aci gatt update char value (timeServHandle, secondsCharHandle, 0, 4,
time) ;

if (ret != BLE STATUS SUCCESS) {
PRINTF ("Error while updating TIME characteristic.\n")
return BLE STATUS ERROR ;

}
return BLE STATUS SUCCESS;

Similarly, the value of "minutes characteristics" should also be updated. The
Minutes_Notify() function as described below performs this operation. This function
updates the value of the "minutes characteristic" exactly once in a one minute interval.

/**
* @brief Send a notification for a minute characteristic of time service
* @param None
* @retval Status
Y/
tBleStatus Minutes Notify(void)
{
tHalUint32 val;
tHalUint32 minuteValue;
tBleStatus ret;

/* Obtain system tick value in milliseconds */
val = HAL GetTick();
/* update "Minutes characteristic" value iff it has changed w.r.t. previous

* "minute" value.
=/

if ((minuteValue=val/ (60*1000)) !=previousMinuteValue) {

/* memmorize this "minute" value for future usage */

previousMinuteValue = minuteValue;

/* create a time[] array to pass as last argument of

aci gatt update char value() API*/
const tHalUint8 time[4] = { (minuteValue >> 24) &0xFF, (minuteValue >> 16) &0xFF,

DoclD027636 Rev 3 ‘Yl

UM1873 X-CUBE-BLE1 software, expansion for
STM32Cube

(minuteValue >> 8) &0xFF, (minuteValue) &0xFF};

/*
* Update value of "Minutes characteristic" using aci _gatt update char value() API
* Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
* API description
=

ret = aci gatt update char value (timeServHandle, minuteCharHandle, 0, 4,
time) ;

if (ret != BLE STATUS SUCCESS) {

PRINTF ("Error while updating TIME characteristic.\n")
return BLE_STATUS ERROR ;
}
}
return BLE_STATUS_SUCCESS;

Finally, Seconds_Update() and Minutes_Notify() must be invoked from main() function.
Update_Time_Characteristics() described below performs this task.

/**
* @brief Updates "Seconds and Minutes characteristics" wvalues
* @param None
* @retval None
=
void Update Time Characteristics() {
/* update "seconds and minutes characteristics" of time service */
Seconds Update () ;
Minutes Notify();
}

Please note that main() function invokes Update_Time_Characteristics(), which in turn
invokes Seconds_Update() and Minutes_Notify().

3.5.2 LED service

LED service can be used to control state of LED2 present on STM32 Nucleo board. This
service has a writable "LED button characteristic", which controls the state of the LED2.
When the GATT client application modifies value of this characteristic, LEDZ2 is toggled.

3.5.21 Adding GATT service and characteristics

The following code in sensor_service.c adds the LED service and its corresponding "LED
button" characteristic to SensorDemo application.

/*
* @brief Add LED button service using a vendor specific profile
* @param None

* @retval Status

*/

tBleStatus Add LED Service (void)
{

tBleStatus ret;

uint8 t uuid[16];

/* copy "LED service UUID" defined above to 'uuid' local variable */
COPY LED SERVICE UUID (uuid);
/*
* now add "LED service" to GATT server, service handle is returned
* via 'ledServHandle' parameter of aci gatt add serv() API.
* Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
* API description
=/

3

DocID027636 Rev 3 21/41

X-CUBE-BLE1 software, expansion for UM1873
STM32Cube

ret = aci gatt add serv(UUID TYPE 128, wuuid, PRIMARY SERVICE, 7,
&ledServHandle) ;
if (ret != BLE STATUS SUCCESS) goto fail;
/* copy "LED button characteristic UUID" defined above to 'uuid' local variable */
COPY_LED UUID (uuid) ;
/*
* now add "LED button characteristic" to LED service, characteristic handle
* is returned via 'ledButtonCharHandle' parameter of aci gatt add char() API.
* This characteristic is writable, as specified by 'CHAR PROP WRITE' parameter.
* Please refer to 'BlueNRG Application Command Interface.pdf' for detailed
* API description
=/
ret = aci gatt add char(ledServHandle, UUID TYPE 128, uuid, 4,
CHAR PROP WRITE | CHAR PROP WRITE WITHOUT RESP,
ATTR PERMISSION NONE, GATT SERVER ATTR WRITE,
16, 1, &ledButtonCharHandle) ;

if (ret != BLE STATUS SUCCESS) goto fail;
PRINTF ("Service LED BUTTON added. Handle 0x%04X, LED button Charac handle:
0x%04X\n", ledServHandle, ledButtonCharHandle);

return BLE STATUS_ SUCCESS;

fail:
PRINTF ("Error while adding LED service.\n");
return BLE_STATUS ERROR ;

}

3.5.2.2 Obtaining characteristics value

When an ACI event is detected by BlueNRG BLE stack, it invokes
HCI_Event_CB()function. In HCI_Event_CB() we can analyze value of the received event
packet and take suitable action. HCl_Event_CB() function is described below:

/**
* @brief This function is called whenever there is an ACI event to be
processed.
* @note Inside this function each event must be identified and correctly
*
parsed.

* @param pckt Pointer to the ACI packet
* @retval None
=
void HCI Event CB(void *pckt)
{
hci uart pckt *hci pckt = pckt;
/* obtain event packet */

hci event pckt *event pckt = (hci _event pckt*)hci pckt->data;
if (hci pckt->type != HCI EVENT PKT)
return;

switch (event pckt->evt) {

case EVT_ VENDOR:
{
evt _blue aci *blue evt = (void*)event pckt->data;
switch (blue evt->ecode) {

case EVT BLUE GATT ATTRIBUTE MODIFIED:
{
/* this callback is invoked when a GATT attribute is modified
extract callback data and pass to suitable handler function */
evt gatt attr modified *evt = (evt gatt attr modified*)blue evt->data;

Attribute Modified CB(evt->attr handle, evt->data length, evt->att data);
}

22/41 DoclD027636 Rev 3 ‘Yl

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3.5.3

3

break;

break;

Attribute_Modified_CB() performs the event handling for LED service. It toggles the LED
present on STM32 Nucleo board when the value of "LED button characteristic" is modified
by the GATT client. Attribute_Modified_CB() is described below:

/**
@brief This function is called attribute value corresponding to
ledButtonCharHandle characteristic gets modified
@param handle : handle of the attribute
@param data length : size of the modified attribute data
@param att data : pointer to the modified attribute data
* @retval None
=
void Attribute Modified CB(tHalUintlé6 handle, tHalUint8 data length, tHalUint8
*att data)
{
/* If GATT client has modified 'LED button characteristic' value, toggle LED2 */
if (handle == ledButtonCharHandle + 1) {
BSP_LED Toggle (LED2) ;

* % o o ok

}
}

Testing the application

In this section the BlueNRG/BlueNRG-MS GUI will be used for testing the SensorDemo
application developed in the previous section. Please download the BlueNRG/BlueNRG-
MS GUI installer provided in the STSW-BNRGUI software package. Detailed instructions
regarding its use can be found in UM1686: BlueNRG development kits. For testing
purposes, hardware components described in Section 4.3.1: "Hardware setup” are needed.
The following diagram shows the interconnections among these components.

Figure 7: Hardware components setup

BlueMRG GLUI

— USE Mini-B to A Cable
powering the board

STM32ZMucleo+BlueMRG

DocID027636 Rev 3 23/41

X-CUBE-BLE1 software, expansion for UM1873

STM32Cube

3.5.3.1

3.5.3.2

24/41

In subsequent sections, the Nucleo board equipped with BlueNRG expansion board will be
referred to as "peripheral device" and the USB dongle as the "central device" throughout
the document.

Testing SensorDemo application using BlueNRG/BlueNRG-MS GUI

This section describes how BlueNRG/BlueNRG-MS GUI can be used to initialize and
configure BlueNRG USB dongle properly so that it can be used to test the BLE application
running on STM32Nucleo board equipped with a BlueNRG/BlueNRG-MS expansion board.
In this example, the PC connected with BlueNRG USB dongle will be configured as "GAP
central device", and the STM32Nucleo board equipped with a BlueNRG/BlueNRG-MS
expansion board is "GAP peripheral device". Once the BlueNRG USB dongle is configured
correctly, it can be used to scan remote devices and send AClI commands described in
UM1686 "BlueNRG development kits". Various useful operations are described below.

Initializing the USB dongle

The BlueNRG USB dongle must be initialized so that it can communicate with the "GAP
peripheral device". The following commands are used for this initialization:

1. BLUEHCI_HAL_WRITE_CONFIG_DATA
2. BLUEHCI_GATT_INIT
3. BLUEHCI_GAP_INIT

Figure 8: Initializing the USB dongle

ACI Comman ds

BLUEHCI_GAP_SET_LIMITED_DISCOVERABLE » | Command Packet

BLUEHCI_ GAP_SET_DISCOVERABLE 3 PR Value
BLUEHCI_GAP_SET_DIRECT_CONNECTABLE |=
BLUEHCI_GAP_SET_IO_CAPABILITY
BLUEHCI_GAP_SET_AUTH_REQUIREMENT
BLUEHCI_GAP_SET_AUTHOR_REQUIREMENT
BLUEHCI_GAP_PASS_KEY_RESPONSE
BLUEHCI_GAP_AUTHORIZATION_RESPONSE
BLUEHCI_ GAP_INIT

RIIEHCT GAR SET_MNON CONMECTARIF =
« m

Literal Info
BLUEHCI_GAP_INIT

Central 0x01 : Peripheral 0x02 : Broadcaster 0x03 : Central 0x04 : Observer

Fiter

(] SELECT ALL

7] car [GarT [Hae
[] L2cap [F] HCI Test] Her

Packets Packet Detals

N Time Type Parameter Value
0 1706:33372 BLUEHCLHAL WRITE_CONFIG_DATA
1 17:06:33.388 HCI_COMMAND_COMPLETE

2 170641700 BLUEHCL GATT_INIT

3 170641714 HCLCOMMAND_COMPLETE

4 1706:47460 BLUEHCI GAP_INIT

5 170647474 HCLCOMMAND_COMPLETE

3

DocID027636 Rev 3

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3.5.3.3

3

Scanning for BLE peripheral device

The command BLUEHCI_GAP_START_GEN_DISC_PROC discovers the "GAP peripheral
device" and the following outcome is generated in the GUI window.
EVT_BLUE_GAP_DEVICE_FOUND confirms that the device has been discovered by the
BlueNRG dongle.

Figure 9: Scanning for devices
7 BueNRG GUIAS | — . . B —. B . Y -

File Tools Help

| Act Commands

BLUEHCI GAP_START_NAME_DISC PROC = | Command Packet
BLUEHCI_ GAP_START_AUTO_CONN ESTABLI
BLUEHCI_ GAP_START_GEN_CONN_ESTABLIS!
BLUEHCI_GAP_START SELECTIVE_CONN_EST
BLUEHCI_GAP_CREATE_CONNECTION
BLUEHCI_GAP_TERMINATE_GAP_PROCEDUR
BLUEHCI_GAP_START_CONN_UPDATE
BLUEHCI GAP_SEND_PAIRING_REQ L
BLUEHCI GAP_RESOLVE_PRIVATE_ADDR
E‘II‘IFHK'I GAP ﬁF\"ukﬂNHFn nnnr‘n : i
Filter

Parameter Value Literal Info

] seLECT ALL
7 Gap [garr 1 HaL
1 L2cap [et Test Inet
9] Update (¥ Autoscrol [sea |
SentjReceived Packets Packet Details
N. Time Type Al Parameter Value Literal Info

72 1613:22.336 EVT_BLUE_GAP_DEVICE_FOUND

75 1613:23622 EVT_BLUE_GAP_DEVICE_FOUND

76 16:13:23.625 EVT_BLUE_GAP_DEVICE_FOUND
77 16:13:24.904 EVT_BLUE_GAP_DEVICE_FOUND
78 16:13:24.905 EVT_BLUE_GAP_DEVICE_FOUND
79 1613:24907 EVT_BLUE_GAP_DEVICE_FOUND
80 16:13:26188 EVT_BLUE_GAP_DEVICE_FOUND
81 16:13:26190 EVT_BLUE_GAP_DEVICE_FOUND
82 16113:26193 EVT_BLUE_GAP_DEVICE_FOUND

« o,

DoclD027636 Rev 3 25/41

X-CUBE-BLE1 software, expansion for UM1873
STM32Cube

3.5.34 Connecting to BLE peripheral device

To connect "GAP peripheral device" with the dongle, we need to issue the command
BLUEHCI_GAP_CREATE_CONNECTION from the BlueNRG/BlueNRG-MS GUI.

The peer address required for the connection is the address of the server as mentioned in
the source code:

tHalUint8 SERVER BDADDR[] = {0x12, 0x34, 0x00, OxEl, 0x80, 0x02};

This command will make the connection and return the connection handle. This connection
handle would be required for subsequent commands to retrieve services and
characteristics.

Figure 10: Create connection

H
i

A Cavrerds

BLUERC] GAR STAAT ALTO CORM ESTAELL = | -
BLUEHC GAR_STAAT_GEN_CONN_ESTASLIS
BLUEHC] GAP_STAAT_SELECTIVE_CONN_E5T
ERAIEHC] GAP_CREATE CONNECTIIN
BLUEHC] GAP_TERMINATE_GAF_FRCCEDUR.
BB GAR STAAT COMMN_LRDATE
BUUEHCI_GAP_SEND_FAFING_REQ)
BANRC] GAP RESCHVE PEINATE_ADDH
BLUEHCLGAP_GET BOMDED_ DEVICES

||||||i
||||||?

f v v
Aig
SOECT WL

g i

¥l e Flosr
Elixa R Tt

[T]

Sanifsce-es Packats Packat Dutals
M. Tane

L] SRR BT U TR

&

!

Vabae:

1 US0245311 HI|COMRAKND COMPLETE
4 250257382 WL COMMAND COMPLETE

L] 150005321 WL COMMAKND COMPUETE
Ol 283EL38 342

1 S0IATM7 MCLCOMMMARD STATUS [

i STRIRNE BT U GAR BRICEURE COWSLITE [¥1T

i svonsnons [N

i
The connection handle can be determined from the HCI_LE_META response of the server.
It is indicated in the figure above.

3

26/41 DoclD027636 Rev 3

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3.5.3.5

3

Get services supported by BLE peripheral device

The server device supports a number of GATT services and the BlueNRG/BlueNRG-MS
GUI can obtain this information by issuing the command
BLUEHCI_GATT_DISC_ALL_PRIMARY_SERVICES. Once the command is issued the
server responds with EVT_BLUE_ATT_READ_BY_ GROUP_RESP for each service
supported by the Server.

Each response includes the connection handle, the length of the response, the data length,
the handle-value pair and the UUID of the service. They are indicated in the figure below.

Figure 11: Discover all supported services
e . e ST

File Tools Help

ACI Commands |

LGATT_EXCHG_CONFIG | Command Padet

‘LGATT_FIND_INFO Parameter Value Literal Info

il Ak 0012 BWEHCLGATTOSCALPRMA.
[LGATT_READ_ATTR_BY_TYPE g

TOATT READ ATTROY GROUP.TPE =m]
[GATT_PREPARE WRITE 00801 Connection Handle Range: 0:0000-0AEFF (0F00 - OAFFF Reserved forfutwe use)
_GATT_EXECUTE_WRITES

[ILGATT_DISC_ALL_PRIMARY_SERVICES

[LGATT_DISC_PRIMARY_SERVICE_BY_UUID

[T GATT FIND INCIUNED SERVICES

Filter
| seLECT AL
| Gap (V] garr] HAL
| L2cap [Het Test] Kl

[clearvist] [¥] Update (] Autoscrol [send

Sent/Received Packets Packet Detalls

N. Time Type * | ameter Value

Service handle UuID

1 HI60LS0 BURHCLGAT DSC ALPRMARL SERACES ot

11 141601585 HCLCOMMAND STATUS 0dA J/

1 GI6 OUCLOAT DSCALSRMARYSERVCES oo

13 141616622 HCICOMMAND STATUS [0301,008,0x15,0x1 028, 00002, 000,41 B, 0xC5, 035, 05 0x02,0400, 084,050, 0xEL, 011, 0x3 A 0xCF 080,036,036, 0x0B |

14 141617387 EVT_BLUE_ATT_READ_BY_GROUP_RESP
15 141618073 EVT_BLUE_ATT_READ_BY_GROUP_RESP
16 141618776 EVT_BLUE_ATT_READ BY_GROUP_RESP
17 141619447 EVT_BLUE_ATT_READ_BY_GROUP_RESP
LR VRTEIRESY 1 6L UE_ATT_READ_BY_GROUP_RESP
19 1416:21509 EVT_BLUE_GATT_ERROR_RESP

20 14:16:21.509 EVT_BLUE_GATT_PROCEDURE_COMPLETE vl I]

o

To find the handle of a service the UUID of that particular service (determined from the
server code given) has to be matched with the response payload
(EVT_BLUE_ATT_READ_BY_GROUP_RESP). The last 16 bytes of the payload is the
UUID of a service.

DocID027636 Rev 3 27/41

X-CUBE-BLE1 software, expansion for UM1873
STM32Cube

3.5.3.6

28/41

Get characteristics supported by BLE peripheral device

The server device supports a number of GATT characteristics and the BlueNRG/BlueNRG-
MS GUI can obtain this information by issuing the command
BLUEHCI_GATT_DISC_ALL_CHARAC_OF_A_SERVICE. Once the command is issued
the server responds with EVT_BLUE_ATT_READ_ BY_TYPE_RESP for each
characteristic supported by the server.

Each response includes the connection handle, the length of the response, the data length,
the handle-value pair and the UUID of the characteristic. They are indicated below in the
figure below.

Figure 12: Discover all supported characteristics

5 BlueNRG GUIVLS0 Lo & -
File Tools Help

ACI Commends |

[LGATT_WRITE_LONG_CHARAC_DESCRIPTOR o | Command Packet
1.GATT_READ_LONG_CHARAC_DESCRIPTOR
[LGATT_WRITE_CHARAC_DESCRIPTOR
[1LGATT_READ_CHARAC_DESCRIPTOR
1.GATT_WRITE_WITHOUT_RESPONSE
[1LGATT_SIGNED_WRITE_WITHOUT_RESPONSE
1LGATT_CONFIRM_INDICATION
[LGATT_WRITE_RESP = \
1.GATT_ALLOW_READ

[T GATT SET GECIIRITY DERM
‘ n

Parameter

3

Filter

] seLeCT AL
[l cap [¥] carr | HaL
1 Lacap [Het Test 1 Het

[clearuat] [¥] update (7] Autoscrol [sena

Sent/Received Padkets Packet Details

N Time Type * | ameter characteristic handl#* uuID

24 14:19:09.043 EVT_BLUE_ATT_READ_BY_TYPE_RESP OxFF

25 14:19:10417 EVT_BLUE_ATT_READ_BY_TYPE_RESP 0B J/

26 14:19:11.790 EVT_BLUE_ATT_READ_BY_TYPE_RESP 0x0C06

Fid 14:19:13164 EVT_BLUE_ATT_READ_BY_TYPE_RESP (054011, 05408,016, 051 5| x02,0%23 0x01 B OxCS5,0xD5, 0xAS5,0x02,0500,0xB4. 094 0xE1 061 1,063 A 0% CF 0x80. 0x6E 0536, 0:

28 14:19:14.536 EVT_BLUE_ATT_READ_BY_TYPE_RESP

2 14:19:15908 EVT_BLUE_ATT_READ_BY_TYPE_RESP

0 11917282
31 14i19:185654 EVT_BLUEATT_READ_BY_TYPE_RESP

32 1419:20028 EVT_BLUE_ATT_READ_BY_TYPE_RESP

33 1419:20713 EVT_BLUE_GATT_ERROR_RESP

34 1419:20713 EVT_BLUE_GATT PROCEDURE_COMPLETE ||« m

m

7]

3

DocID027636 Rev 3

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3.5.3.7

3

Read characteristic value

To read a particular characteristic on the server, the command
BLUEHCI_GATT_READ_CHARACTERISTIC_VAL can be used. In this command we have
to provide two parameters: the attribute handle of the characteristic we are reading and the
connection handle. From the previous sections we already know the connection handle
value which is “0x0801” in this case. The attribute handle would be the handle of the
characteristic handle plus one since the "value" handle of this characteristic lies at offset
one from the characteristic handle. Please note that the time characteristic has only one
attribute which is a "readable" attribute of the time value. In this case this handle is
"0x22+1" or 0x23.

Figure 13: Reading data from time characteristic

BLICGIUNEC . T o e GODBEEEES. B WhENS L umeeolC)
File Tools Help

Port: [COM36 (ST DK) - HUl Reset
ACI Commands |

[1GATT_WRITE_LONG_CHARAC_DESCRIPTOR » | Command Packet
1 GATT_READ_LONG_CHARAC_DESCRIPTOR F— e = ==
[1GATT_WRITE_CHARAC_DESCRIPTOR s
1GATT_READ_CHARAC_DESCRIPTOR ¥
1GATT_WRITE_WITHOUT_RESPONSE 204

1 GATT_SIGNED_WRITE WITHOUT_RESPONSE

[1LGATT_CONFIRM_INDICATION

[GATT WRITE_RESP g

'LGATT_ALLOW_READ

[T GATT SFT SFCIIRITY DFRM
: i

3

Filter
] seLECT AL
1 Gap [¥] garr 1 HaL
1 Lacap [Het Test 1 het

[clearuist | [) update (V] Autoscrl [send

Sent/Received Padkets Packet Details

N Time Type * | ameter Data Value

28 14:19:14.536 EVT_BLUE_ATT_READ_BY_TYPE_RESP OxFF
2 14:19:15908 EVT_BLUE_ATT_READ_BY_TYPE_RESP 009
30 14119:17.282 EVT_BLUE_ATT_READ_BY_TYPE_RESP 0C07

31 141948654 EVT_BLUE_ATT_READ_BY TYPE RESP 10%01,0x08,0x04, € C,0102,0100,0:00
32 141920028 EVT_BLUE_ATT_READ_BY_TYPE_RESP

33 141920713 EVT_BLUE_GATT ERROR_RESP

34 141920713 EVT_BLUE_GATT PROCEDURE_COMPLETE

36 14:27:32858 HCI_COMMAND_STATUS B

EL pUIPZEEER Y EVT_BLUE_ATT_READ_RESP ‘

38 14:27:33592 EVT_BLUE_GATT_PROCEDURE_COMPLETE -l n

5]

The value of the time characteristic is available in the response from the server
EVT_BLUE_ATT_READ_RESP. The value in this case is the 4 bytes at the end of the
payload.

DocID027636 Rev 3 29/41

X-CUBE-BLE1 software, expansion for

UM1873

STM32Cube

3.5.3.8

30/41

Write characteristic value

To read a particular characteristic on the server, the command
BLUEHCI_GATT_WRITE_WITHOUT_RESPONSE can be used. In this command we have
to provide four parameters: the attribute handle of the characteristic we are reading, the
connection handle, the data length and the data value to write. From the previous sections
we already know that the connection handle value is "0x0801" in this case. The attribute
handle would be the handle of the characteristic handle plus one since the "value" handle
of this characteristic lies at offset one from the characteristic handle. Please note that the

"LED button" characteristic has only one attribute which is a "writable" attribute of the "LED
button" value.

As explained in Section 3.5.1: "Time service", by writing data to this characteristic we can
toggle the LED2 present on the "peripheral device" and hence when we perform the
BLUEHCI_GATT_WRITE_WITHOUT_RESPONSE command, the LED2 should be
switched ON/OFF alternately.

Figure 14: Writing data to LED button time characteristic

PR . o . G, . WS . ey
File Tools Help

ACT Commends |

LUEHCI_GATT_READ_MULTIPLE_CHARAC_VAI » | Command Packet
LUEHCI_GATT_WRITE_CHARAC_VAL
LUEHCI_GATT_WRITE_LONG_CHARAC_VAL
LUEHCI_GATT_WRITE_CHARAC_RELIABLE
LUEHCI_GATT_WRITE_LONG_CHARAC_DESCF
LUEHCI_GATT_READ_LONG_CHARAC_DESCRI
LUEHCI_GATT_WRITE_CHARAC_DESCRIPTOR &
LUEHCI_GATT_READ_CHARAC_DESCRIPTOR

Parameter Value Literal Info

11 IF
]
Filter

] sELECT AL

] Gap (V] Gatr] HaL
] Lacap [F) Her Test] Het
Y-
SentReceived Packets Packet Detalls
N Time Type * | lameter Value

55 14:39:32934 EVT_BLUEATT_READ BY TYPE_RESP

5 14:39:34308 EVT_BLUE_ATT_READ BY_TYPE_RESP

57 14:39:35664 EVT_BLUEATT_READ BY_TYPE_RESP

58 14:39:37.038 EVT_BLUEATT_READ_BY_TYPE_RESP

59 143938411 EVT_BLUE_ATT_READ_BY_TYPE_RESP

60 14:39:39.782 EVT_BLUE_ATT_READ BY_TYPE_RESP

61 14:39:40470 EVT_BLUE_GATT ERROR_RESP

62 14:39:40484 EVT_BLUE_GATT_PROCEDURE_ COMPLETE

64 14:39:42.793 HCLCOMMAND_COMPLETE
65 14:39:54.197 EVT_BLUE_GATT_NOTIFICATION

00
0:04
0:01
0xFD23
0:00

DocID027636 Rev 3

3

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3.5.3.9

3

Obtain notification for a characteristic

To enable notifications for notifiable characteristics (i.e. characteristics which have
CHAR_PROP_NOTIFY property), BLUEHCI_GATT_WRITE_CHARAC_DESCRIPTOR
command can be used. This command can be used to write a descriptor to an attribute. We
must set correct values of attribute handle, and configuration data while using this
command. For enabling notification, the configuration data is {0x00, 0x01}. In this case,
handle of the attribute for "Minutes characteristic" lies at offset two from the characteristic
handle.

Figure 15: Enabling notifications from server

File Tools Help

Port: |COM36 (ST DK) = m _—
ACI Commands (rweset |
T.GATT_WRITE_LONG_CHARAC_VAL | Command Packet

1.GATT_WRITE_CHARAC_RELIABLE
'LGATT_WRITE_LONG_CHARAC_DESCRIPTOR
1.GATT_READ_LONG_CHARAC_DESCRIPTOR
1.GATT_WRITE_CHARAC_DESCRIPTOR
'1.GATT_READ_CHARAC_DESCRIPTOR
'LGATT_WRITE_ WITHOUT_RESPONSE 3
1.GATT_SIGNED_WRITE_WITHOUT_RESPONSE—
'LGATT_CONFIRM_INDICATION
'T GATT WRITF RFSD -

[il '

Parameter

Filter
] SELECT ALL
| Gap [AT HAL
] Lacap [F) Her Test] MCt
] Update (9] Autoacrol
Sent/Received Packets Packet Details
N. Time Type * | ameter Value
0xFF
36 14:27:32858 HCI.COMMAND_STATUS . 0:0B
£l 14:27:33.592 EVT_BLUE_ATT_READ_RESP 0:0COF
8 14:27:33,592 EVT_BLUE_GATT_PROCEDURE_COMPLETE [0%01,0%08, 0x06,0:25, 0500, 014, 0x00,0+00,000]

40 14:33:01.989 HCI_COMMAND_COMPLETE

42 14:34:33838 HCI_COMMAND_STATUS
43 14:34:35086 EVT_BLUE_GATT_PROCEDURE_COMPLETE ‘

44 PUEL TP b VT _BLUE_GATT_NOTIFICATION I

45 14:35:57.450 EVT_BLUE_GATT_NOTIFICATION -|le "

DoclD027636 Rev 3 31/41

X-CUBE-BLE1 software, expansion for

STM32Cube

UM1873

3.5.3.10

3.54

3.5.4.1

3.5.4.2

32/41

Disconnecting from remote device

To disconnect the peripheral device from the central device, BLUEHCI_GAP_TERMINATE
command can be used as shown below:

Figure 16: Disconnecting the peripheral device

LUEHCI_GAP_START_NAME_DISC_PROC
LUEHCI_GAP_START_AUTO_CONN_ESTABLISH
| [IFHCT (AP START GFN COMN FCTARIIRH 7
. m »
Filter

SELECT ALL

) ap GATT

CearLst | [V] Update V] Autoscrol
SentReceived Packets
N Time Type
0 15:01:28446 BLUEHCI GAP_TERMINATE
1 150128461 HCLCOMMAND STATUS
2 150128743 HCIDISCONNECTION_COMPLETE

LacAP HCI Test

Packet Detalls

Parameter

1 el

57 BlueNRG GUIvL5.0 e e — R L e e TR TR R oo S|
File Tools Help
purt: [Co3e 7000 (et |
ACI Commands
LUEHCI_GAP_SET_EVT MASK | Command Packet
t“E:&g‘ﬁ[ﬁﬂmﬁU:‘EEJ'*H“LET Parameter Value Literal Info |
Ul |_GAP_ A
LUEHC]_GAP_CLEAR_SECURITY DB _ OB BLUEHCIGAP_TERMINATE
LUEHCT_GAP_ALLOW_REBOND Parameter Total Length ¢
LUEHCT GAP_START_LIM_DISC_PROC _ || |Connection Fiandien] 0:0301 Connection Handle Range: 0:0000-00EFF (00F00 - 00FFF Reserved for future use)
LUEHCI_GAP_START_GEN_DISC_PROC [Ressen T 043 Other End Terminated Connection Authentication Failure error code (0x05), Other End Terminated Connection error codes (0x13-..

Adding security to sample application

In this section we show a slight modification of the sample application code in order to
protect one characteristic and describe the proper way to perform the pairing from the
BlueNRG/BlueNRG-MS GUI in order to gain the authorization to access it.

Protecting the characteristic

In order to add read protection to a characteristic it is enough to modify the secPermissions
flag of the call to aci_gatt_add_char. The example below show how to set up the Time
service seconds characteristic with a protection requiring an authenticated pairing and that

will guarantee the data exchange will be encrypted.

ret =

&secondsCharHandle) ;

If the GATT client will try to read this characteristic without having performed an
authenticated pairing, the reading will return an error.

Performing the pairing

aci_gatt_add char (timeServHandle, UUID TYPE 128, uuid,
CHAR_PROP_READ, ATTR PERMISSION ENCRY READ | ATTR PERMISSION_ AUTHEN READ,

4’

0,

16, 0,

In order to perform the paring with the BlueNRG/BlueNRG-MS GUI the user should first
declare its I/O capabilities, after having initialized the USB dongle as done in Section
3.56.3.2: "Initializing the USB dongle", with the command
BLUEHCI_GAP_SET_I0_CAPABILITY as depicted in the figure below, where the selected
capability is |IO0_CAP_KEYBOARD_DISPLAY as on the PC running the BlueNRG GUI
there is both a keyboard and a display.

DocID027636 Rev 3

(S72

UM1873

X-CUBE-BLE1 software, expansion for
STM32Cube

3

Figure 17: Setting the device I/O capabilities

File Toals Hep

ST Comenards

ELMEHC] GAP_SET I CARSRILITY .| Corrand Part=t

ELUEHC] GAP_SET_GLITH_RECLIREMENT Pavimener Valse Lisral ke

o s bétts MEKIGPSERCREAT
BLUEHC]_GAF_Pass_KEY_REFORGE

LN AP AUTHOREATIRL PRt 1 -wn]
ELUBHCLGoP T o 10.CAF KEVSOAMDDILAY X0 oty of e e 10,CAP SPLAY GOLY, b K0 CAP DAL VES 10 .
BLUEHC] GAF_SET_MON_COMMNECTABLE
ELUEHC]_GAP_SET_UNDIRECTED_COMNECT
BLUEHC] GAP_SLAVE_SECURITY_REQLEST
BLUEHC]_GAF_UPDATE_ADW_DATA
BLUEHC] GAP_DELETE_AD TYPE

ELUEHC] GAP_GET_SECURITY_LEVEL
BLUEHC] GAP_SET_EVT_MASK

W 3 0

Fiter
LT AL

¥ car [arT [EIES
LICaF I Hel Tesst [L

-

Serkfacaved Paderts Packet Debyls
Mo Time Type Farameter ke Literel hfe
0 didddedn
1 1014:16407 | HC COMMARD COMPLETE
3 10:4: 485 HC|COMMEND COMPLETE
L
5 10:14:28755 HC COMMAND COMPLETE

7 14 I3RENT | HCLCOMMARD OMPLETE

Apart from the I/O capabilities the user needs to configure the parameters for the pairing.
This is achieved through the command BLUEHCI_GAP_SET_AUTH_REQUIREMENT as
shown in the figure below.

To match with the code of the sample application we set man-in-the-middle protection,
OOB disabled, and configured a fixed PIN of value 123456 (0x1E240).

Figure 18: Setting the pairing parameters

Fls Tl Hel

Porti | comz (57T08) - E
[rop-—
ELUEHCT GAP SET B3 CARABILITY o | Conmand Packat
BLUEHCLGAP_SET_ALITH_REGUIREMENT Parameter

3

BLUEHC] GAP_SET_ALTHOR_FEQUIREMENT
ELUEHCT GAP PASS KEY RESONSE -
ELUEHST GAP_AUTHOREATKA RESPORGE (&
ELUEHC] GAP_INIT

BUUEHT AP _SET MOH_ COMMECTABLE
BLUEHET 5P _SETUNBIRECTED_CONNECT:
ELUBHC] GAP_SLAVE_SECLRITY_REQUEST
BLUEHC] GAP_UIPDATE_ALN_DATA
ELUEHC]_GAP_DELETE_AD_TYFE

BLUEHC] GAP_GET_SEC URITF_LEVEL
BLUEHC] 5P _SET_EVT_MASK .

Fiter
ELETAL
¥ e [warT [e

[E=] Teeet e

| cem i | [Fuosme (] Ausscrol

Sarkflasived Padub Duckat Dabain

P Time Type Perameter il Librel Tnfo.

1 10:14:08407 | HCLCOMRAND COMPLETE

3 10:14:34558 | HCLEOMMAND COMPLETE
5 10:14:38735 | HCLCOMRMAND COMPLETE

7 10:14:33557 | HCLEOMMAND COMPLETE

] 10:18:33517 | HCLEOMWMAND COMPLETE

DoclD027636 Rev 3 33/41

X-CUBE-BLE1 software, expansion for UM1873
STM32Cube

34/41

After this operation, and after a connection has been set up as described in Section
3.56.3.4: "Connecting to BLE peripheral device", the user can start the pairing procedure
with the command BLUEHCI_GAP_SEND_PAIRING_REQUEST which will result in an
HCI_ENCRYPTION_CHANGE and in an event EVT_BLUE_GAP_PAIRING_CMPL
indicating the result of the pairing. This procedure is depicted in the figure below.

Figure 19: Pairing with the device

Fin Teoh Halp

ot [cndrg - Cawnese]
ALl Cormaands |
BLUEHCL GAP_ALLOW_REBOMD | Comnard Facket
BLUEHC] GAP_START LIM_D4SC_PRAC Pararrtar Valuw Litaral Infe
ST Sa STt einiE PG e s BLBHCLGAEENDPARINGFER
BLUEHCIGAR_START_NAME_DISC_PROC
BLUEHC] GAP_START SUTE COMR ESTARLD i [
BLLEHCI GAF_START_GEN_CONN_ESTABLISE el o Connesin Handk Range 000 DEFF (AR -DOFFF Rezerved forfuture sl

BULEHCL 53 START SLECTIE Conb_&T oco Mo OuPsdogrequetissetamyiihedodcs ok pety b1 P repast it .
BLUEHCI GAP_CAEATE_COMMECTION

ELLEHCIGAD_TERMPIATE GAD PROCEDUR
BLUEHCIGAR_START_COREY_IPOATE

BLLEHC] GAP_SERED PAIRING RECQ
BLUEHCLGAR_RESOLVE_PRIVATE ADDR:
BLUEHCI GAF_GET BONDED_DEVICES.

] "

Fitar
ST
¥ aap G | L
e HCLTest 1na
[o | 5 updste 5 sunscrd [send |

Sent Riecenar Facksts

N Time Type Halus
12 | Me2038 5 ENT_BLUE GA9_DEVICE FOUND
13 |10:3038 630 ENT_BLUE 649 DEVICE FOUND

14 10247082 BT BLLE GAP_PROCEDURE CORPLETE

16 10221518 HO]COMMEHD STATLS
17 10229345 EVT_BLUE AP PROCEDURE_ COMPLETE
15 10229348 HOLLE META

01743831 HOLCOMMEND STATLE
TIPS PET 1LY i EC R OTION CHANGE
22 |10:2-4402 EVT_BLLE A8 _PARING_CMPLT =

After a successful pairing it is now possible to proceed to reading the protected
characteristic with the normal procedure described in Section 3.5.3.7: "Read characteristic
value".

DoclD027636 Rev 3

3

UM1873

System setup guide

411

41.2

3

System setup guide

Hardware description

This section describes the hardware components needed for developing a sensor-based
application.

The following sub-sections describe the individual components.

STM32 Nucleo platform

The STM32 Nucleo boards provide an affordable and flexible way for users to try out new
ideas and build prototypes with any STM32 microcontroller line. The Arduino™ connectivity
support and ST Morpho headers make it easy to expand the functionality of the STM32
Nucleo open development platform with a wide choice of specialized expansion boards.
The STM32 Nucleo board does not require any separate probes as it integrates the ST-
LINK/V2-1 debugger/programmer. The board comes with the comprehensive STM32 HAL
software library together with various packaged software examples.

Information regarding the STM32 Nucleo board is available on st.com at:
http://www.st.com/stm32nucleo

Figure 20: STM32 Nucleo board

BlueNRG/BlueNRG-MS expansion board

The X-NUCLEO-IDB04A1 and X-NUCLEO-IDB0O5A1 expansion boards are compatible with
the STM32 Nucleo boards. They each contain a BlueNRG/BlueNRG-MS component, which
is a BLE single-mode network processor, compliant with Bluetooth specification v4.0 and
v4.1 respectively. The BlueNRG/BlueNRG-MS can act as master or slave. The entire
Bluetooth Low Energy stack runs on the embedded Cortex MO core. The
BlueNRG/BlueNRG-MS offers the option of interfacing with external microcontrollers using
SPI transport layer.

DocID027636 Rev 3 35/41

System setup guide UM1873

Figure 21: BlueNRG and BlueNRG-MS expansion boards connected to STM32 Nucleo board

|FOR _EVALUATION PURPOSES ONLY
1 94y 23

RoHS
COMPLIANT
2002798/EC 1

X-NUCLEO-IDB04A1 X-NUCLEO-IDBO5A1

The documentation related to X-NUCLEO-IDB04A1 and X-NUCLEO-IDB05A1 is available
on www.st.com.

41.3 BlueNRG USB dongle

The STEVAL-IDB003V1 is an evaluation board based on BlueNRG, a low power Bluetooth
Smart IC, compliant with the Bluetooth 4.0 specifications and supporting both master and
slave roles.

The STEVAL-IDB003V1 has a USB connector for PC GUI interaction and firmware update.

@ USB dongle use is optional.

Figure 22: STEVAL-IDB003V1 BlueNRG USB dongle

The STEVAL-IDB003V1 evaluation board firmware and related documentation is available
on www.st.com

36/41 DoclD027636 Rev 3 ‘Yl

UM1873 System setup guide

4.2 Software description

The following software components are needed in order to setup the suitable development
environment for creating applications for the STM32 Nucleo equipped with the
BlueNRG/BlueNRG-MS expansion board:

e X-CUBE-BLE1: an expansion for STM32Cube dedicated to Bluetooth Low Energy
applications development. The X-CUBE-BLE1 firmware and related documentation is
available on www.st.com.

e Development toolchain and compiler: The STM32Cube expansion software supports
the three following environments:

- |IAR Embedded Workbench for ARM® (EWARM) toolchain + ST-LINK/V2
— RealView Microcontroller Development Kit (MDK-ARM) toolchain + ST-LINK/V2
— System Workbench for STM32 + ST-LINK/V2

4.3 Hardware and software setup

This section describes the hardware and software setup procedures. It also describes the
system setup needed for the above.

431 Hardware setup
To develop a BLE application, the following hardware is needed:

1. One STM32 Nucleo development platform

2. One BlueNRG/BlueNRG-MS expansion board (order code: X-NUCLEO-IDB04A1 or
X-NUCLEO-IDB05A1)

3. One USB type A to Mini-B USB cable to connect the Nucleo to the PC

4. One BlueNRG USB dongle (order code: STEVAL-IDB003V1)

The BlueNRG USB dongle is not mandatory but is useful for testing BLE applications
running on the Nucleo platform. If you don't want to use the USB dongle, as an alternative,
you can replace it with the following additional hardware:

1. One STM32 Nucleo Development platform

2. One BlueNRG/BlueNRG-MS expansion board (order code: X-NUCLEO-IDB04A1 or
X-NUCLEO-IDB05A1)

3. One USB type A to Mini-B USB cable to connect the Nucleo to the PC

4. One USB type A to Mini-B USB cable to connect the Nucleo to the PC

4.3.2 Software setup

This section lists the minimum requirements for the developer to setup the software
environment, run the sample testing scenario based on the GUI utility and customize
applications.

e Development toolchains and compilers: Please select one of the integrated
development environments supported by the STM32Cube expansion software. Please
read the system requirements and setup information provided by the selected IDE
provider.

e GUI utility: The BlueNRG/BlueNRG-MS GUI utility has following minimum
requirements:

— PC with Intel or AMD processor running one of following Microsoft operating
system: Win XP SP3 Vista/7

— Atleast 128 MBs of RAM

- 2 XUSB ports

— 40 MB of hard disk space

DocID027636 Rev 3 37/41

3

System setup guide UM1873

43.3

4.3.3.1

4.3.3.2

4.3.3.3

38/41

System setup guide

This section describes how to setup different hardware parts before writing and executing
an application on the STM32 Nucleo board with BlueNRG/BlueNRG-MS expansion board.

BlueNRG USB dongle setup

The BlueNRG USB dongle allows to easily add BLE functionalities to a user PC by just
plugging it on a PC USB port. The USB dongle can be used as a simple interface between
the BlueNRG/BlueNRG-MS device and a GUI application on the PC. The on board STM32
microcontroller can also be programmed, so the board can be used to develop applications
that need to use BlueNRG/BlueNRG-MS. The board can be powered through the USB
connector, which can also be used for I/O interaction with a USB Host. The board has also
two buttons and two LEDs for user interaction.

The reader can refer to user manual UM1686, available on www.st.com, for more details.

BlueNRG/BlueNRG-MS GUI setup

The BlueNRG/BlueNRG-MS GUI included in the software package is a graphical user
interface that can be used to interact and evaluate the capabilities of the remote
BlueNRG/BlueNRG-MS network processor through the local BlueNRG USB dongle.

This utility can send standard and vendor-specific HCI commands to the controller and
receive events from it. It lets the user configure each field of the HCI command packets to
be sent and analyzes all received packets. In this way BlueNRG/BlueNRG-MS can be
easily managed at low level.

In order to use the BlueNRG/BlueNRG-MS GUI, make sure you have correctly set up your
hardware and software (BlueNRG/BlueNRG-MS GUI installed) according to the
requirements described in UM1686.

STM32 Nucleo and BlueNRG/BlueNRG-MS expansion board setup

The STM32 Nucleo development motherboard allows the exploitation of the BLE
capabilities provided by the BlueNRG/BlueNRG-MS network processor.

The Nucleo board integrates the ST-LINK/V2-1 debugger/programmer. The developer can
download the relevant version of the ST-LINK/V2-1 USB driver by searching STSW-
LINKOO09 on www.st.com (according to the MS Windows OS).

The X-NUCLEO-IDB04A1 or X-NUCLEO-IDB05A1 BlueNRG/BlueNRG-MS expansion
boards can be easily connected to the Nucleo motherboard through the Arduino UNO R3
extension connector, and are capable of interfacing with the external STM32
microcontroller on the STM32 Nucleo board using the SPI transport layer.

DocID027636 Rev 3

3

UM1873

References

5

3

References

1.
2.

UM1755: BlueNRG Bluetooth® LE stack application command interface (ACI)
UM1686: BlueNRG development kits

DocID027636 Rev 3 39/41

Revision history

UM1873

6

40/41

Revision history

Table 2: Document revision history

Date

Revision

Changes

27-Aug-2015

1

Initial release.

30-Jan-2017

Updated Introduction, Section 2: "What is
STM32Cube?", Figure 5: "STM32 Nucleo + BlueNRG/
BlueNRG-MS expansion board software architecture”,
Section 3.3: "Folder structure”, Section 3.5:
"SensorDemo application description", Section 3.5.3:
"Testing the application”, Section 4.2: "Software
description”, Section 4.3.3.3: "STM32 Nucleo and
BlueNRG/BlueNRG-MS expansion board setup”.

Added BlueNRG-MS references throughout document.

14-Feb-2017

Updated How does this software complement
STM32Cube?, Figure 6: "X-CUBE-BLE1 package
folder structure”and Section 3.5: "SensorDemo
application description”.

DocID027636 Rev 3

3

UM1873

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST") reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics — All rights reserved

3

DocID027636 Rev 3 41/41

	1 Acronyms and abbreviations
	2 What is STM32Cube?
	2.1 STM32Cube architecture

	3 X-CUBE-BLE1 software, expansion for STM32Cube
	3.1 Overview
	3.1.1 Bluetooth Low Energy
	3.1.2 Bluetooth operating modes
	3.1.3 Bluetooth Low Energy software partitioning
	3.1.4 Profiles and services
	3.1.5 Bluetooth Low Energy state machine

	3.2 Architecture
	3.3 Folder structure
	3.4 Guide for writing applications
	3.4.1 APIs
	3.4.2 Initialization
	3.4.2.1 Initializing STM32 Cube HAL
	3.4.2.2 Initializing Nucleo board peripherals
	3.4.2.3 Initializing BlueNRG HAL and HCI
	3.4.2.4 Initialization and services characteristics

	3.4.3 Security requirements
	3.4.4 Connectable mode
	3.4.5 Connection with central device

	3.5 SensorDemo application description
	3.5.1 Time service
	3.5.1.1 Adding Time service
	3.5.1.2 Update and notify characteristic value

	3.5.2 LED service
	3.5.2.1 Adding GATT service and characteristics
	3.5.2.2 Obtaining characteristics value

	3.5.3 Testing the application
	3.5.3.1 Testing SensorDemo application using BlueNRG/BlueNRG-MS GUI
	3.5.3.2 Initializing the USB dongle
	3.5.3.3 Scanning for BLE peripheral device
	3.5.3.4 Connecting to BLE peripheral device
	3.5.3.5 Get services supported by BLE peripheral device
	3.5.3.6 Get characteristics supported by BLE peripheral device
	3.5.3.7 Read characteristic value
	3.5.3.8 Write characteristic value
	3.5.3.9 Obtain notification for a characteristic
	3.5.3.10 Disconnecting from remote device

	3.5.4 Adding security to sample application
	3.5.4.1 Protecting the characteristic
	3.5.4.2 Performing the pairing

	4 System setup guide
	4.1 Hardware description
	4.1.1 STM32 Nucleo platform
	4.1.2 BlueNRG/BlueNRG-MS expansion board
	4.1.3 BlueNRG USB dongle

	4.2 Software description
	4.3 Hardware and software setup
	4.3.1 Hardware setup
	4.3.2 Software setup
	4.3.3 System setup guide
	4.3.3.1 BlueNRG USB dongle setup
	4.3.3.2 BlueNRG/BlueNRG-MS GUI setup
	4.3.3.3 STM32 Nucleo and BlueNRG/BlueNRG-MS expansion board setup

	5 References
	6 Revision history

