
Development of a Trunk Control
System using AutoDevKit

An innovative foot detection feature based on
Time of Flight principle

Master’s Degree Thesis

Candidate: Marco Mannino
University Supervisor: Prof. Lucia Lo Bello

ST Microelectronics Tutor: Eng. Alessandro Troisi

Department of Electrical, Electronics and Computer Engineering

Faculty of Computer Engineering

26/03/2021

Contents

1 Introduction 1
1.1 The Trunk Control System . 1
1.2 AutoDevKit Ecosystem . 3

2 Hardware 5
2.1 Introduction . 5
2.2 AEK-MCU-C4MLIT1 System Control Board 5
2.3 AEK-CON-5SLOTS1 Connection Board 7
2.4 VL53L1X Time of Flight Sensors . 8
2.5 AEK-MOT-2DC40Y1 . 10
2.6 AEK-LED-21DISM1 . 11
2.7 AEK-AUD-C1D9031 Audio Board . 12
2.8 AEK-CON-SENSOR1 and STEVAL-MKI207V1 13
2.9 AGUHAJSU 2.8 Inch Touch LCD Module 14

3 Software 15
3.1 Introduction . 15
3.2 SPC5Studio . 15

3.2.1 PinMap Editor . 17
3.2.2 How to generate, compile and debug the application 18

3.3 AutoDevKit Plug-In . 19
3.3.1 AutoDevKit Components . 19
3.3.2 Board View. 20

4 Trunk Control Subsystems 22
4.1 Introduction . 22
4.2 Foot Detection . 23

4.2.1 Hardware Configuration . 23
4.2.2 Software Configuration . 24

4.3 Trunk Lock and Lift . 25
4.3.1 Hardware Configuration . 25
4.3.2 Software Configuration . 26

i

4.4 Visual Alert . 27
4.4.1 Hardware Configuration . 27
4.4.2 Software Configuration . 28

4.5 Acoustic Alert . 29
4.5.1 Hardware Configuration . 29
4.5.2 Software Configuration . 30

4.6 Motion Control . 31
4.6.1 Hardware Configuration . 31
4.6.2 Software Configuration . 32

4.7 Infotainment GUI . 33
4.7.1 Hardware Configuration . 33
4.7.2 Software Configuration . 34

5 Advanced Gesture for Foot Detection 35
5.1 Introduction . 35
5.2 The gesture recognition . 35
5.3 Detecting Area . 36
5.4 Single Sensor Setup . 37
5.5 Time of Flight Sensor . 38
5.6 Maximum Detecting Distance . 38
5.7 Detecting Base: Single Sensor . 42
5.8 Detecting Base: Double Sensor . 44
5.9 The Gesture Recognition . 45

6 Trunk Control System 48
6.1 Introduction . 48
6.2 Hardware Setup . 49
6.3 State Machine . 50
6.4 DEMO . 51

7 Conclusion 52

ii

List of Figures

1.1 Trunk Control use case . 2
1.2 Trunk Control System . 3

2.1 Trunk Control boards . 5
2.2 AEK-MCU-C4MLIT1 System Control Board 6
2.3 AEK-CON-5SLOTS1 . 7
2.4 VL53L1X-SATEL . 8
2.5 Time-of-Flight principle . 8
2.6 SPAD array . 9
2.7 AEK-MOT-2DC40Y1 . 10
2.8 AEK-LED-21DISM1 . 11
2.9 AEK-AUD-C1D9031 . 12
2.10 AEK-CON-SENSOR1 and STEVAL-MKI207V1 13
2.11 AGUHAJSU 2.8 inch touch LCD module 14

3.1 SPC5 Studio and AutoDevKit logos . 15
3.2 Project workspace . 16
3.3 Project components . 16
3.4 SPC5 Studio RLA drivers . 17
3.5 PinMap Editor interface windows . 18
3.6 Example AutoDevKit component configuration 20
3.7 Board View button . 20
3.8 Board View editor window . 21

4.1 Trunk Control subsystems . 22
4.2 Foot Detection basic algorithm . 23
4.3 ToF sensor board pinout . 24
4.4 Foot Detection state machine . 24
4.5 Trunk Lock and Lift connections . 25
4.6 Trunk Lock state machine . 26
4.7 Visual Alert board connections . 27
4.8 Light Control state machine . 28

iii

4.9 Acoustic Alert board connections . 29
4.10 Acoustic Alert state machines . 30
4.11 Motion Control board connections . 31
4.12 Wake-Up Detection signals . 32
4.13 Motion Control state machine . 32
4.14 Infotainment GUI board connections 33
4.15 Infotainment GUI state machine . 34

5.1 Foot Detection gesture . 36
5.2 Detection constraints . 36
5.3 Single sensor setup . 37
5.4 Maximum Detecting Distance . 38
5.5 Ideal Detection. N measurements of the ground. 39
5.6 Real Detection. N measurements detect a distribution of values. 39
5.7 Total darkness measures . 40
5.8 Cloudy day measures . 40
5.9 Night and artificial light measures . 41
5.10 Sunny day measures . 41
5.11 Detecting Base . 42
5.12 Cube placement . 43
5.13 Test to find the Detecting Base . 43
5.14 Detecting Base with two sensors . 44
5.15 Two sensors hardware setup . 44
5.16 Gesture on the new Detecting Base . 45
5.17 Foot Detection System states . 45
5.18 Accepted sequence . 46

6.1 Trunk Control System . 48
6.2 Panel CAD . 49
6.3 Support for ToF sensors CAD. View from Top. 49
6.4 Trunk Control state machine . 50
6.5 Trunk Control DEMO. 51

iv

Chapter 1

Introduction

The aim of this thesis work is in realizing a Trunk Control System to automate the
opening and closing of a car trunk. It shall be affordable, easy to use and reliable.
Furthermore, it shall be safe, avoiding the possibility of being dangerous for peo-
ple in the proximities. The opening of the trunk shall start after a foot detection,
as it happens in the solutions currently in use. However, compared to the solutions
already adopted by car makers, the aim is to propose an innovative one. The innova-
tion consists in the use of the Time of Flight Sensors and in the realization of a foot
detection algorithm Gesture-Based, on which the thesis focuses. The foot detection
shall require few resources but, at the same time, it shall be effective.
To build the Trunk Control System, some automotive products made by STMicroelec-
tronics are used. In particular, we adopt the AutoDevKit technologies, indispensable
for fast prototyping of the Trunk Control System.
This Chapter describes what is a Trunk Control System and introduce the develop-
ment tools. Chapters 2 and 3 contain respectively the descriptions of the Hardware
and Software tools used. Chapter 4 focuses on the implementation of all the Trunk
Control subsystems taken individually, with the exception of the gesture recognition,
discussed instead in Chapter 5. In Chapter 6, the DEMO is presented to show all fea-
tures of the Trunk Control System developed. And finally, the conclusions are drawn
in Chapter 7.

1.1 The Trunk Control System

As stated before, the Trunk Control is a system which make it easier to access the
trunk of a car. An example of use case consists in a person, with busy hands, who
wants to access the car trunk in a simple way. Surely, performing a foot gesture to
open the trunk is easier than having to open it manually.

1

2 Introduction

Figure 1.1: Trunk Control use case

As it can be guessed from the previous example, the essential features required for
a Trunk Control design are at least three: the foot recognition, the trunk lock and the
trunk lift. We intend to add higher levels of safety to the standard system. These
consists in preventing the system activation if the vehicle is in motion, in adding a
visual and acoustic signal during the opening and closing phase, and, even more
important, in allowing the system to stop if the trunk finds an obstacle.
Since the system to be realized includes several functions, it is convenient to break it
down into many subsystems. Those identified are:

• Foot Detection: It is the key portion of the entire Trunk Control System. It
detects a specific gesture normally performed with a feet to allow or deny the
opening procedure.

• Trunk Lock: to unlock the trunk at the begin of the opening procedure and to
lock it at the end of the closing procedure.

• Trunk Lift: to raise or lower the trunk.

• Visual Alert: for visual signaling.

• Acoustic Alert: for acoustic signaling.

• Motion Alert: to prevent the trunk opening if the car is in motion even in case
of engine off.

• Infotainment GUI: to report the status of the system and for user interaction.

1.2 AutoDevKit Ecosystem 3

Figure 1.2: Trunk Control System

1.2 AutoDevKit Ecosystem

AutoDevKit is a fast prototyping ecosystem for automotive applications. It provides
hardware and software tools for making the applications development easy and fast.
These tools are:

• AEK-MCU Discovery boards, for evaluating specific automotive microcontroller
and and AEK-xxx functional boards, implementing specific functions like light-
ing or motor control.

• Pre-assembled AEKD-demonstrators board implementing an automotive system
solution.

• STSW-AUTODEVKIT software package, an SPC5STUDIO Eclipse plugin to facil-
itate firmware development for applications adopting AutoDevKit boards.

For each subsystem, an AutoDevKit functional board is used, according to Table
1.1. All subsystems are coordinated by the board AEK-MCU-C4MLIT1, hosting the

4 Introduction

Subsystem Boards
Foot Detection VL53L1X-SATEL

Trunk Lock and Lift AEK-2DC40Y1
Visual Alert AEK-LED-21DISM1

Acoustic Alert AEK-AUD-C1D9031
Motion Alert AEK-CON-SENSOR1 and STEVAL-MKI207V1
Infotainment GUHAJSU 2.8 Inch Touch LCD Module

Table 1.1: Correspondence between Subsystem and Functional Board

SPC58EC80E5 32-bit Power Architecture automotive Chorus 4MB microcontroller.
The hardware used for the Trunk Control System is described in the next Chapter.

Chapter 2

Hardware

2.1 Introduction

As anticipated in the previous chapter, the Trunk Control System consists of seven
boards handled by the AEK-MCU-C4MLIT1 and connected through the AEK-CON-
5SLOTS1 connector board.

Figure 2.1: Trunk Control boards

2.2 AEK-MCU-C4MLIT1 System Control Board

This board features the 32-bit SPC58EC80E5 microcontroller, heart of the whole sys-
tem. The board has an integrated programmer (by PLS) for MCU debugging and
programming and a USB Virtual COM port for serial output to a PC running a stan-
dard terminal program.

5

6 Hardware

Figure 2.2: AEK-MCU-C4MLIT1 System Control Board

The 32-bit SPC58EC80E5 microcontroller has the following features:

• 2 main dual-issue 32-bit CPUs built on ®Power Architecture technology, oper-
ating up to 180MHz

• 4224 KB (4096 KB code Flash + 128 KB data Flash) on-chip flash memory

• 384 KB on-chip general-purpose SRAM (+ 128 KB local data RAM: 64 KB in-
cluded in each CPU)

• 8 DSPIs available

• 8 (Programmable Interrupt Timer) PIT channels available

• 2 x 32 eMIOS channels available

• Up to 96 channels SARADC available

• 8 MCAN available

2.3 AEK-CON-5SLOTS1 Connection Board 7

2.3 AEK-CON-5SLOTS1 Connection Board

The AEK-CON-5SLOTS1 connector board is designed to facilitate connections and
reduce development time while prototyping automotive applications with an SPC5x
Discovery board. The set of 4x37 extension connectors allows developers to recon-
figure pin assignments for ADCs, Timers, GPIOs, DSPIs and other peripherals coming
from SPC5 Discovery boards and generate different pin assignment patterns on the
extension connectors.

Figure 2.3: AEK-CON-5SLOTS1

The AEK-CON-5SLOTS1 board has the following features:

• Fast and easy extension of 4x37 connector on SPC5x discovery boards

• Single female connector to plug the board onto an SPC5x 4x37 connector

• Two male connectors with same outputs as 4x37 connector

• Two configurable male connectors 4x37 whose pins can be reassigned to con-
nect different functional boards

• Additional ground and 5V pins

• Bare section available on the board for specific application purposes

• Female-to-female jump wire set included

8 Hardware

2.4 VL53L1X Time of Flight Sensors

The VL53L1X device is an advanced optical device allowing distances measurements
and target detection. The device incorporates the Time-of-Flight (ToF) a patent from
STMicroelectronics able to measure the distance between a sensor and an object
based on the time difference between the emission of a VCSEL light signal and its
return to the sensor, after being reflected by the object.

Figure 2.4: VL53L1X-SATEL

The VL53L1X embeds the emitter, a vertical cavity surface emitting laser (VCSEL),
and the receiver, an array of single photon avalanche diodes (SPADs).
The photons emitted by the laser reflect on the target and trigger avalanches when
coming back to the SPAD. The time between the emission of the photons and the
avalanche (ToF) is measured and translated into a target distance in the range result
register.

Figure 2.5: Time-of-Flight principle

2.4 VL53L1X Time of Flight Sensors 9

The measured distance value is calculated using the following formula:

MeasuredDistance =
Photon Travel T ime

2
× Light Speed (2.1)

Although the VCSEL emitted beam is not perfectly symmetrical, it can be considered
as a cone. Such a beam has 97 % of the optical power present in a cone of 27°. Since
no optic is used in the outgoing emission path, it is the native performance of the
VCSEL. The glass present on the VCSEL is a simple IR filter to reduce interference on
the t0 time measurement. On the receiver side, there is a SPAD array covered by a
convergent lens. Consequently, the system can be seen as a camera subsystem with
a big granularity due to the limited number of SPADs. The full diagonal FoV of the
device receiver is 27° using the 16x16 SPADs.

Figure 2.6: SPAD array

The VL53L1X sensor architecture allows ROIs (programmable Regions of Interest)
with a reduced set of SPADs to be selected, thereby reducing the sensing area and
allowing the receiver FoV to be reduced. The only condition is that the ROI must have
an array of at least 4x4 SPADs. Summarizing, the emitter FoV cannot be modified
by the VCSEL and the system keeps sending FoVs measuring 27°. Conversely, the
receiver FoV can be reduced to measure only a part of the scene of interest.

10 Hardware

2.5 AEK-MOT-2DC40Y1

The AEK-MOT-2DC40Y1 is a very compact solution for multi DC motor driving appli-
cations, embedding all the driver and signal decoding functions on the same board.
It allows you to manage up to 5 DC Motors.

Figure 2.7: AEK-MOT-2DC40Y1

Each motor has a enumeration. Motor1, Motor3 and Motor5 are driven by two
VNH7040AY, two automotive fully integrated H-bridge motor drivers, allowing rota-
tion in both clockwise and counterclockwise directions. Instead Motor2 and Motor4
are driven by VN7E010AJ, two high-side drivers. All motors can rotate in parallel,
except for the Motor5 because its operation depends on both the H-bringe chips. An
important feature of the board consists in the current sense capability. For each mo-
tor is possible to detect how much current a motor is demanding. This feature is very
useful if for example we want to detect if a motor is slowed down by some external
force, since it will try to compensate requiring more current. For motors driven by
the VNHs chips, the use of encoders is supported.

2.6 AEK-LED-21DISM1 11

2.6 AEK-LED-21DISM1

The AEK-LED-21DISM1 evaluation board is designed to drive four LED strings. The
board hosts two L99LD21 LED driver ICs, each of which is able to manage a single
boost and two buck circuits.

Figure 2.8: AEK-LED-21DISM1

The boost controller section in each L99LD21 LED driver integrates a high current
gate driver for an external N-channel MOSFET and delivers a constant output volt-
age to two integrated buck converters. The boost controller of the two devices can
be stacked to allow dual phase operation for high power applications with an inter-
leaving pattern for improved input current ripple and current load sharing. Each
L99LD21 buck converter integrates an N-channel MOSFET driven by a bootstrap
circuit. The overall behavior of the board AEK-LED-21DISM1 is monitored and con-
trolled through L99LD21 dedicated registers, which can be read or set by an external
microcontroller through the fast SPI interface via a 12-pin male connector. Finally,
a special Limp Home Mode implemented in the L99LD21 driver ensures that active
communication with the MCU is regularly monitored.

12 Hardware

2.7 AEK-AUD-C1D9031 Audio Board

Figure 2.9: AEK-AUD-C1D9031

The AEK-AUD-C1D9031 is a very compact AVAS solution based on SPC582B60E1
Chorus family MCU and FDA903D Class D audio amplifiers that emits warning sounds
to alert pedestrians of the presence of e-vehicles. The AEK-AUD-C1D9031 integrates
two audio amplifiers in stereo mode or two separate audio channels. The board
compact size allows the designer to strategically place different modules around the
vehicle to ensure that warning sounds can be heard along the entire vehicle length.
All the modules can be controlled by a central MCU via CAN interface. The embed-
ded SPC582B60E1 microcontroller monitors and controls the two Class-D FDA903D
power amplifiers driving the loudspeakers; the MCU sends the audio samples via I2S
bus and programs the amplifiers via I2C interface.

2.8 AEK-CON-SENSOR1 and STEVAL-MKI207V1 13

2.8 AEK-CON-SENSOR1 and STEVAL-MKI207V1

Micro-Electro-Mechanical System (MEMS) sensors are increasingly used in automo-
tive applications because of the advantages they can bring in safety, pollution reduc-
tion and navigation. The latest generation features very high accuracy, small size,
and affordable cost.
AEK-CON-SENSOR1 is an evaluation board, dedicated to the connection of a MEMS
sensor in DIL-24 socket and SPC5 microcontrollers. It is compatible all DIL-24 sen-
sors both industrial and automotive grade. From software point view, specific drivers
and application examples have been prepared to exploit the sensor functionalities.

Figure 2.10: AEK-CON-SENSOR1 and STEVAL-MKI207V1

The STEVAL-MKI207V1 is a little evaluation board that hosts the ASM330LHH MEMS
gyroscope. This board can be plugged into the AEK-CON-SENSOR1 seen before for
easy evaluation of the gyroscope itself.
The ASM330LHH is a 3D digital accelerometer and 3D digital gyroscope system-in-
package with a digital I²C/SPI serial interface standard output, performing at 1.3
mA in combo High-Performance mode. The accelerometer features smart sleep-
towake-up (Activity) and return-to-sleep (Inactivity) functions that allow advanced
power saving. The device has a dynamic user-selectable full-scale acceleration range
of ±2/±4/±8/±16 g and an angular rate range from ±125 to ±4000 dps. The
ASM330LHH can be configured to generate interrupt signals by using hardware
recognition of free-fall events, 6D orientation, activity or inactivity, and wake-up
events.

14 Hardware

2.9 AGUHAJSU 2.8 Inch Touch LCD Module

The AGUHAJSU 2.8 Inch Touch LCD Module is a board containing both the LCD and
the Touch chip. Both communicates using SPI interface and are powered at 5V. The
Display has a resolution of 320x240 pixels RGB and is backlit.

Figure 2.11: AGUHAJSU 2.8 inch touch LCD module

Although the display is not part of the AutoDevKit hardware ecosystem, the Au-
toDevKit software package provides a component which allows its use. Both chips
communicate at the same SPI frequencies so just one channel can be allocated.

Chapter 3

Software

Figure 3.1: SPC5 Studio and AutoDevKit logos

3.1 Introduction

This chapter describes the software tools used to build the Trunk Control System:
SPC5Studio and AutoDevKit software packages. The first tool enables the program-
ming of SPC5 microcontroller families. The second one is an extension of the first
enabling system-level automotive application fast prototyping.

3.2 SPC5Studio

SPC5-STUDIO is an integrated development environment (IDE) based on Eclipse.
It contains a standard workspace and an extensible plug-in system environment for
customizations.. The aim of SPC5-STUDIO is to maximize developer productivity
of embedded applications based on SPC5 Power Architecture 32-bit microcontrollers
with a single tool for evaluation, development, design and production. SPC5-STUDIO
includes an application wizard to simplify project creation and configuration; it au-
tomatically solves component dependencies and generates support files.

15

16 Software

Figure 3.2: Project workspace

The application wizard integrates the initial components into the project, with the
key elements employed by SPC5-STUDIO to generate the final application source
code. Typical of layered architecture, the services in one component are provided to
other components. Furthermore, the configuration of each component is supported
by an intuitive GUI.

Figure 3.3: Project components

Register Level Access (RLA) components are low level drivers with direct access to
the MCU and its peripherals such as CAN, Ethernet, DSPI, ADC, PIT and GTM. The
RLA components can be added and configured through a time-saving GUI.

3.2 SPC5Studio 17

Figure 3.4: SPC5 Studio RLA drivers

The FreeRTOS open source real time operating system is available on request as
a separate component that is compatible with the rest of the environment. SPC5-
STUDIO also contains straightforward software examples for each peripheral in the
MCU, which developers can use to become familiar with the specific code involved.
Other advantages of SPC5-STUDIO include:

• the ability to integrate other software products from the Eclipse standard mar-
ket place

• the availability of a free license GCC GNU C Compiler component

• the possibility to support industry-standard compilers

• support of multi-core microcontrollers

• a PinMap editor to facilitate MCU pin connections

3.2.1 PinMap Editor

Pins in SPC5 microcontrollers are identified as Ports because they can have different
functions depending on the configuration settings in certain MCU registers:

• Peripheral related pins such as CAN, ADC, eMIOS.

• System function pins such as RESET (cannot be modified).

• Special function pins such as supply voltage pins.

The PinMap editor supports pin functionality selection by providing the possible con-
figurations for each selected pin.

18 Software

Figure 3.5: PinMap Editor interface windows

The Editor view is the largest window, where the pin configuration can be performed
with the help of a graphical representation of the selected MCU.
The Outline view is presented in a Device → Function → Pin hierarchy, which lists
all the eligible pins for a particular peripheral function.
The property view provides further information for a selected pin, including name,
pin state and mode settings.

3.2.2 How to generate, compile and debug the application

SPC5Studio is a tool based on code generation. After using a component and saving
the configuration the generation button must be pressed. This generates the C code
that can be used in the application project. This code can be compiled using the
Compile button. This will create a debug file inside the UDE folder that can be used
to debug the application with UDE tool.

3.3 AutoDevKit Plug-In 19

3.3 AutoDevKit Plug-In

The AutoDevKit plug-in for Eclipse extends SPC5-STUDIO into a straightforward,
low-cost, time saving tool designed to help automotive application engineers evalu-
ate, prototype, develop and deploy complex embedded systems. The main advan-
tages of the AutoDevKit initiative are:

• Fast prototyping: with integrated hardware and software components, compo-
nent compatibility checking and MCU and peripheral configuration tools.

• Flexibility: allowing the creation of new system solutions from existing solu-
tions by adding dedicated boards for further functionality or removing unused
boards.

• Hardware abstraction: if, for example, you swap your MCU between an SPC58EC
Chorus 4M, an SPC584B Chorus 2M, or an SPC582B Chorus 1M, the tool will
automatically re-generate pin allocations accordingly.

• High-level application APIs: AutoDevKit provides a set of function APIs able to
control specific functional boards. The APIs contain functions able to exploit
the chosen hardware functionality and facilitate communication with the MCU.

AutoDevkit provides a GUI to facilitate the configuration and setup for each sup-
ported component, together with a sample code demonstrating typical usage and
applications. Another key feature is the Board View visual tool, which shows the
electrical wiring between microcontroller and board connectors and the connection
between the MCU board and other functional boards.

3.3.1 AutoDevKit Components

AutoDevKit adds new items to the list of the components that can be used in a SPC5-
STUDIO project. AutoDevKit components are added in the same way as other com-
ponents are added to an SPC5 Studio project. Each functional board component only
appears in the list of the MCUs able to support it, and there is a Release Note compo-
nent for all MCU platforms, which provides a summary of the components installed
with the AutoDevKit plugin. The configuration of an AutoDevKit component is very
similar to configuring other components in SPC5-STUDIO, the difference being two
new features in the Configuration View for Pin Allocation:

• Allocation

• Deallocation

20 Software

These new features automatically allocate or deallocate available MCU pins to allow
the use of the MCU peripherals by newly added components. To enable these two
features,the newly added component must be configured firstly.

Figure 3.6: Example AutoDevKit component configuration

3.3.2 Board View.

The Board View tab introduced with the AutoDevKit plugin for SPC5-STUDIO shows
how MCU pins are mapped on the available board connectors. The view also pro-
vides dedicated tables to represent how the MCU allocated pins are connected to
functional boards added from the AutoDevKit component library. Each table shows
the mapping between functional board connectors and pins and corresponding MCU
board connectors and pins. This information can render the wiring phase less time-
consuming and error-prone. AutoDevKit Init Package Component must be added
to the project to render the Board View button visible and to see other AutoDevKit
components (functional boards).

Figure 3.7: Board View button

3.3 AutoDevKit Plug-In 21

In the example below, the colored dots in the 4x37 connector image help identify the
pins required to wire the functional board to the MCU board. Some pins are required
for the AEK-LED-21DISM1 board instance V0, while others are unused or reserved.

Figure 3.8: Board View editor window

Chapter 4

Trunk Control Subsystems

4.1 Introduction

This Chapter describes the development of all the Trunk Control Subsystems: Foot De-
tection, Trunk Lock, Trunk Lift, Trunk Opening, Motion Control, Visual Alert, Acoustic
Alert, Infotainment GUI. For each subsystem both hardware and software configura-
tions are provided.

Figure 4.1: Trunk Control subsystems

22

4.2 Foot Detection 23

4.2 Foot Detection

The Foot Detection is the main feature of the entire Trunk Control System. Here we
describe just a simple implementation, important to understand how the ToF sensor
works, while the final one will be entirely covered in Chapter 5. In this case, just
one sensor is used to build this subsystem. The foot is detected if it is located at a
distance less than a predetermined threshold, otherwise it is not detected.

Figure 4.2: Foot Detection basic algorithm

4.2.1 Hardware Configuration

To use the VL53L1X sensor, at least five pins are required, as it can be seen from
Figure 4.3. The first two pins, starting from the bottom, are dedicated to the GND and
3.3V power supply. The Following two pins are dedicated to the I2C Communication,
carrying the Clock and the Data signals. Finally, the XSDN pin is necessary to manage
the switching on and off of the sensor.

24 Trunk Control Subsystems

Figure 4.3: ToF sensor board pinout

4.2.2 Software Configuration

The software developed implements the state machine of Figure 4.4. In IDLE condi-
tions, the system waits until a foot is detected. The microcontroller polls the sensor
and receives a distance sample. If this sample is less then the selected threshold,
according to Figure 1.1, the foot is detected and the chosen led turns on for a prede-
fined WAIT TIME. Then it turns off and the state machine returns in IDLE state.

Figure 4.4: Foot Detection state machine

4.3 Trunk Lock and Lift 25

4.3 Trunk Lock and Lift

The Trunk Lock and Trunk Lift subsystems are also essential to build the Trunk Control
System. The first allows locking and unlocking the trunk, the second allows the trunk
to lift.

4.3.1 Hardware Configuration

Figure 1.4 shows the hardware configuration used to build those subsystems. Three
motors are required, one for locking and two for lifting. To control all the motors,
the AEK-MOT-2DC40Y1 is employed.

Figure 4.5: Trunk Lock and Lift connections

This board, as seen in Chapter 2, allows the motors to rotate in both directions thanks
to the H bridge topologies embedded. Another important feature consists in sensing

26 Trunk Control Subsystems

the current absorbed by the motors. This is really useful as it allows us to understand
if the engine is subject to stress, related to the possibility that the Trunk encounters
an obstacle during the opening phase. Concerning the pins, those needed to let the
motors rotate are INA and INB. If INA is high and INB is low, the motor rotates
in clockwise direction. In the opposite case the motor rotate in counterclockwise
direction. Finally, if both signals are high the motor is in brake condition. A PWM
signal can be use to modulate the motor speed rotation. All other pins are employed
in the multisense feature for Motor 1.

4.3.2 Software Configuration

The system behaves as follows. In IDLE state the system waits until the Button Open
is pressed. Than it starts the unlock procedure, starting the MOTOR LOCK engine
in counterclockwise direction. After a selected time, it starts the opening procedure.
The two LIFT MOTORs start to rotate in clockwise direction untile the first motor
absorbs a current exceeding the selected threshold. Then the two motors are braked
until the Button Close is pressed. Pressing this last button starts the closing procedure,
mirroring the first.

Figure 4.6: Trunk Lock state machine

4.4 Visual Alert 27

4.4 Visual Alert

The Visual Alert is provided for safety reasons. Through this system the user is warned
through a light blinking routine that the trunk is opening up, avoiding unpleasant ac-
cidents. The flashing of the lights must occur both in the opening and in the closing
phase.

4.4.1 Hardware Configuration

Figure 4.7: Visual Alert board connections

28 Trunk Control Subsystems

To manage the lights the AEK-LED-21DISM1 board is used. The connections are
showed in Figure 4.6. The two L99LD21 led driver ICs hosted on the board require a
supply of 5V. They communicate with the microcontroller through SPI protocol. All
the SPI pins but the chip selects are shared among the two ICs.

4.4.2 Software Configuration

The initial state of the system is the IDLE one and it remains in this state until the
Button is pressed. On Button press the routine for the visual signaling starts. This
routine is based on cyclically switching the lights on and off so that the time the lights
are on is the same as the time the lights are off. The routine ends after N cycles and
the system return to the initial conditions.

Figure 4.8: Light Control state machine

4.5 Acoustic Alert 29

4.5 Acoustic Alert

The Acoustic Alert subsystem plays a role similar to that of the previous system. It
warns with an acoustic signal that the trunk is raising or lowering. This acoustic
signal is a beep synchronized with the flashing of the lights of the Visual Alert.

4.5.1 Hardware Configuration

This system, unlike those seen so far, involves the use of two ECUs. In addition to
the AEK-MCU-C4MLIT1 master, there is a slave microcontroller stored in the AEK-
AUD-C1D9031. The hardware configuration is showed in Figure 2.9. First of all
the AEK-AUD-C1D9031 is powered at 12V. Two speakers are connected to the board
outputs, represented in the right of the figure. The board shall be controlled via CAN
bus from a master ECU. The CAN protocol requires the connection of the two pins at
the top, carrying the CAN High and CAN Low signals.

Figure 4.9: Acoustic Alert board connections

30 Trunk Control Subsystems

4.5.2 Software Configuration

Since the Acoustic Alert subsystem requires two ECUs, there are two firmware run-
ning that communicate with each other. The master, as showed in Figure 2.10, waits
the pressure of the PLAY or STOP button to send the corresponding CAN message
to the slave. On the other hand, the slave waits to receive a CAN START or STOP
message, to actually play or stop the sound file stored in its flash memory.

Figure 4.10: Acoustic Alert state machines

The file contains a sequence of beeps and has the following properties:

• Extension: wav

• Bit depth: 16

• Channels: 1

• Sample rate: 44.1KHz

4.6 Motion Control 31

4.6 Motion Control

The Motion Control subsystem recognizes if the car is in motion or not. If the car is in
motion the trunk shall not be opened even if a foot is detected, once more for safety
reasons.

4.6.1 Hardware Configuration

For the Motion Control the STEVAL-MKI207V1 board is used, hosting the ASM330LHH
Gyroscope MEMS. This board is plugged into the AEK-CON-SENSOR1 board through
the P1 connector, as showed if Figure 2.12. To connect the sensor to the supply
a jumper is inserted between the left and central pins on VDD-SEL. Both VDD and
VDDIO must be connected to 3.3V. Finally four pins are dedicated to the SPI Com-
munication.

Figure 4.11: Motion Control board connections

32 Trunk Control Subsystems

4.6.2 Software Configuration

To detect if the car is in motion, the wake-up feature of the gyroscope is used. To
detect this event two parameters must be configured: Threshold and Duration. If
the sensor produces acceleration samples that exceed the selected Threshold for a
Duration interval time, it detects a wake-up event.

Figure 4.12: Wake-Up Detection signals

In this subsystem the LED is turned on for WAIT TIME seconds if a motion is detected.
Then it is turned off and the subsystem returns in IDLE state.

Figure 4.13: Motion Control state machine

4.7 Infotainment GUI 33

4.7 Infotainment GUI

The Infotainment GUI shows the info related to the status of the Trunk Control
System. It is useful because using a Display the user has a feedback of what’s happen-
ing to the Trunk Control System. It is also useful to give input to the system through
the display embedded touch panel.

4.7.1 Hardware Configuration

Both Display and Touch communicate through the SPI protocol. For this reason, as
can be seen in Figure 4.14, 8 pins are employed in this communication. MOSI, MISO
and CLK lines can be shared while CS and TCS must be different. The display needs
5V of power supply, and 3.3V are needed for the LED pin. In this case the IRQ pin is
essential because every time the touch is pressed an interrupt is generated, allowing
to detect the event.

Figure 4.14: Infotainment GUI board connections

34 Trunk Control Subsystems

4.7.2 Software Configuration

The first version of the Infotainment implements a simple state machine. At the
beginning the system is in IDLE state and the LCD is configured. Then the state
is changed in PRINT MESSAGE and the first of N messages is showed through the
display. Every time the touch is pressed the message cyclically changes. This state
machine will be appropriately modified for the final Trunk Control System.

Figure 4.15: Infotainment GUI state machine

Chapter 5

Advanced Gesture for Foot Detection

5.1 Introduction

As said before, the Foot Detection subsystem is the heart of the entire Trunk Control
System. It shall have the following features:

1. Precise and Accurate in the foot recognition

2. Intuitive to use

3. Resistant to different weather and soil conditions.

It now becomes clear that the simple Foot Detection presented in Chapter 4 does not
meet these requirements as each measurement below the selected threshold can be
mistaken for a foot and the different atmospheric and soil conditions impacts the
acquisition of accurate samples by the ToF sensor.

5.2 The gesture recognition

To achieve the three key requirements, we propose a gesture recognition. Rather
than trying to recognize a foot, we shall try to identify a sequence that must be
performed by the user to get the trunk open. The choice falls in a gesture simple to
reproduce by the user and at the same time difficult to reproduce by natural events,
so that the first two requirements are met. The gesture to be performed is represented
in Figure 5.1.

35

36 Advanced Gesture for Foot Detection

Figure 5.1: Foot Detection gesture

Selected a Detecting Base, identified by one or more sensors, the user must cross it
completely in both directions by performing a cyclic movement in a fixed time lapse.

5.3 Detecting Area

The definition of the Detecting Area is essential to understand how high and how
wide the movement to perform should be. Suppose to build a Detecting Device,
containing one or more ToF sensors, facing downwards and projecting a Detective
Area, as shown in Figure 5.2.

Figure 5.2: Detection constraints

The elements defining it are the Detecting Base and distances 1, 2 and 3. To build
the gesture-based foot recognition system, these four elements must be defined. The
chosen parameters are:

• Distance 1: distance between the Detecting Device and the ground. A plausible
value is 30 cm.

5.4 Single Sensor Setup 37

• Distance 2: minimum detection distance. It shall be 0.

• Distance 3: maximum detection distance. It shall be as close as possible to
distance 1, allowing to detect even gestures performed low to the ground.

• Detecting Base: the minimum surface that must be horizontally completely
crossed to perform the gesture. The width shall be 20 cm and the height be-
tween 2 and 5 cm.

The next step consists in understanding if the ToF sensor is able to work at these
distances.

5.4 Single Sensor Setup

The following setup is used for the single sensor studies. The ToF is placed at 30
cm from the ground, facing down, respecting the chosen distance 1. A 16x16 Region
of Interest is selected because we want the sensor to cover the largest possible area
assuming that the Detecting Base must be entirely covered by the sensor.

Figure 5.3: Single sensor setup

38 Advanced Gesture for Foot Detection

5.5 Time of Flight Sensor

As described in Chapter 2, the VL53L1X sensor sends an optical signal to the object
through a cone of 27° and detects its distance through the reflected beam captured
by the SPAD Array. The first beam reflected hitting an array element determines the
acquisition of a single distance measurement. This means that for each beam sent the
sensor detects just one distance. This array can ranges from a minimum dimension
of 4x4 to a max of 16x16.
Regarding the constraints on the Detecting Area:

• Distance 1: is respected by construction

• Distance 2: can be 0 since the sensor has no restrictions on the minimum
detection distance

• Distance 3: must be identified since the sensor is subject to disturbances re-
lated to the atmospheric and soil conditions in which it is located

• Detecting Base: this also requires other studies as it depends on the sensor
selected ROI and distance 1.

5.6 Maximum Detecting Distance

Figure 5.4: Maximum Detecting Distance

The Distance 3, referred as maximum detecting distance from now on, defines a thresh-
old for the object detection so that every object situated at a distance greater than
the maximum is ignored. More this distance is similar to distance 1, more the sys-
tem works well allowing to detect movements close to the ground. In an ideal case,
assuming the sensor is not making mistakes in detecting distances, the maximum

5.6 Maximum Detecting Distance 39

detecting distance and distance 1 could be the same, so that every object above the
ground can be detected.

Figure 5.5: Ideal Detection. N measurements of the ground.

Unfortunately the sensor does not always detect exactly the same distance but shows
a behavior like the one presented in Figure 5.6.

Figure 5.6: Real Detection. N measurements detect a distribution
of values.

It happens because the sensor works with light rays and the distance measurement
depends on their reflections. To determine the maximum detecting distance it is neces-
sary to quantify the error in the sensor measurement under different weather condi-
tions. For this reason, several tests were carried out producing the following results.

40 Advanced Gesture for Foot Detection

Figure 5.7: Total darkness measures

Figure 5.8: Cloudy day measures

5.6 Maximum Detecting Distance 41

Figure 5.9: Night and artificial light measures

Figure 5.10: Sunny day measures

42 Advanced Gesture for Foot Detection

To get the data distributions, a Python script was developed, including PySerial and
Matplotlib packages. The first allowed to collect data via serial, the second to plot
them. For each test 1x105 samples were analyzed.
From data distribution, it can be noticed that the environment in which the sensor
is placed determines different measurements. Less is the environment light (both
artificial and natural) less becomes the range of values detected. This is proven
by the distribution of Figure 5.7, detected in total darkness condition. The worst
measurements belongs to the sunny day case where the average value is 10 cm higher
than the real one and the range of values goes from 20 to 80cm.
To minimize the probability of error in detecting an object when there is no one, the
minimum distance value between the various distributions should be considered. So,
the Maximum Detecting Distance chosen is 20 cm.

5.7 Detecting Base: Single Sensor

The Detecting Base determines the surface that the foot must completely cross for the
gesture recognition. In particular the width must be completely crossed as the gesture
develops horizontally. However the height is also important because the wider it is
the easier it is to be intercepted by a foot.

Figure 5.11: Detecting Base

These parameters depends on the selected Region of Interest. A bigger ROI covers a
bigger surface but the measurements obtained by its edges are less accurate. There-
fore, the decision is to consider the Detecting Base as the surface covered by the
sensor which provides an error on the measurements less than 15%, thus excluding
measurement errors greater than 4.5 cm. This means that an error greater than 4.5
cm can not be tolerated. A test is performed to know the maximum w and h of the
Detecting Base that can be afforded by the sensor. A cube is placed on the ground,
centered with respect to the sensor, and it is translated along the w axis to detect its
distance. Note that because a 16x16 SPAD is selected, h and w are equals.

5.7 Detecting Base: Single Sensor 43

Figure 5.12: Cube placement

Figure 5.13: Test to find the Detecting Base

The errors are computed as:

e = Real Distance−MeasuredDistance (5.1)

The test shows that the Maximum Detecting Base achievable with one sensor is a
square with side 4 cm. That is not enough according to the system requirements so
at least two sensors are required.

44 Advanced Gesture for Foot Detection

5.8 Detecting Base: Double Sensor

We assumed that the Detecting Base is the minimum surface to be crossed while
performing the gesture. It does not necessarily means that both sensors must cover
the entire area. It is possible to place two sensors at the edge of the area defining the
Detection Base itself, showed in Figure 5.14.

Figure 5.14: Detecting Base with two sensors

This area is obtained selecting a 4x16 ROI and placing the sensors at 19cm of dis-
tance, as showed in Figure 5.15.

Figure 5.15: Two sensors hardware setup

The decision to minimize the width of the area covered by each sensor (green ar-
eas) maximizing instead the one not covered (grey) was taken to make the system
more robust. This makes it harder for one foot to cover both areas without proper
recognition of the gesture.

5.9 The Gesture Recognition 45

5.9 The Gesture Recognition

As said before, the Trunk Opening Control System starts only if the gesture performed
by the foot is recognized. The gesture consists in crossing in both directions the
Detecting Base, as showed in Figure 5.1.

Figure 5.16: Gesture on the new Detecting Base

The algorithm is based on the idea that a foot can be in three different states:

• 0: not detected.

• 1: detected by sensor 1.

• 2: detected by sensor 2.

Figure 5.17: Foot Detection System states

46 Advanced Gesture for Foot Detection

A gesture can be represented through a sequence of states. The sequence that repre-
sents the gesture of Figure 5.16 is: 0,1,0,2,0,2,0,1,0. Also the sequence 0,2,0,1,0,1,0,2,0
is admitted because we want the gesture to work also in the opposite direction. The
central zeros in the sequence are necessary because a complete crossing of the de-
tecting base is desired. For example the first admitted sequence is showed in Figure
5.18.

Figure 5.18: Accepted sequence

The algorithm is implemented using the function detect foot(), called cyclically by the
microcontroller. It can be divided in four parts:

• System State Detect: detect the state of the system. If sensor 1 detects a
distance less than the maximum detecting distance the state is 1; if sensor 2
detects an object the state is 2; if there is no detection the state is 0 otherwise,
if both sensors detect something, the state is 3. The last means that there is a
fixed object under the trunk, e.g. a stone.

• State Sequence Update: update the sequence of states if the state changes.

• State Sequence Check: compares the detected sequence with those admitted, if
the first reaches a length equal to the SEQ LEN. If there is a match the function
set the global variable foot detected to 1

• System Reset: if the sequence reaches a length equal to the SEQ LEN or a
RESET TIME has elapsed, the system resets and it re-starts the detection mode.

5.9 The Gesture Recognition 47

1 void detect_foot (){

2 static uint16_t distance;

3 static uint8_t system_state;

4 static uint8_t sequence[SEQ_LEN] = {0,0,0,0,0,0,0,0};

5 static uint8_t seq_index = 0;

6 static uint8_t sequence_1[SEQ_LEN] = {1,0,2,0,2,0,1,0};

7 static uint8_t sequence_2[SEQ_LEN] = {2,0,1,0,1,0,2,0};

8

9 /* Detect System State */

10 system_state = 0;

11 get_distance (&distance , AEK_TOF_DEV0);

12 if(distance < MAX_DETECTING_DISTANCE) system_state += 1;

13 get_distance (&distance , AEK_TOF_DEV1);

14 if(distance < MAX_DETECTING_DISTANCE) system_state += 2;

15

16 /* Update Sequence */

17 if(system_state + seq_index > 0 && sequence[seq_index -1] !=

system_state){

18 if(! seq_index) seconds = 0;

19 sequence[seq_index] = system_state;

20 seq_index ++;

21 }

22 else{}

23

24 /* Check if Sequence is admitted */

25 if(seq_index == SEQ_LEN){

26 if(memcmp(sequence , sequence_1 , sizeof(sequence)) == 0

27 || memcmp(sequence , sequence_2 , sizeof(sequence)) == 0){

28 foot_detected = 1;

29 }

30 else {}

31 }

32 else{}

33

34 /* Reset System */

35 if(seq_index == SEQ_LEN || seconds > RESET_TIME){

36 memset(sequence , 0, sizeof(sequence));

37 seq_index = 0;

38 seconds = 0;

39 }

40 }

Listing 5.1: Foot Detection implementation procedure

Chapter 6

Trunk Control System

6.1 Introduction

All the subsystems realized and described in Chapters 4 and 5 are combined to build
the Trunk Control System.

Figure 6.1: Trunk Control System

In summary, the Trunk Control Systembehaves as follows: it waits until the gesture is
performed, unlock the trunk, raise the boot and alerts the user through audible and
visual signals. In addition, it detects if the car is moving and if there is an obstacle
during the opening and closing phases. A dedicated GUI displays the system status
and allows user interactions.

48

6.2 Hardware Setup 49

6.2 Hardware Setup

All the boards of the Trunk Control System are arranged and screwed onto a plexiglass
panel and attention is put in optimizing the length of the connection cables. The
AEK-CON-5SLOTS1 connection board is essential to arrange the cables and to secure
the connections. The panel was designed using the LibreCAD Tool and made though
a laser engraving machine. The CAD represented in Figure 6.2 shows the placing of
the boards and the holes, needed to fix them to the panel.

Figure 6.2: Panel CAD

The ToF sensors are placed in a dedicated support, designed with Fusion360 Tool
and realized with a 3D printer. The support houses two Time of Flight sensors at 18
cm from each other, respecting the constraints imposed in Chapter 5.

Figure 6.3: Support for ToF sensors CAD. View from Top.

50 Trunk Control System

6.3 State Machine

The State Machine of Figure 6.4 summarizes the operation of the Trunk Control Sys-
tem, based on 5 states:

• INIT: Initialization state. It initializes all system components.

• WAIT OPENING INPUT: The system waits until a gesture is detected. If that
happens and the vehicle is not moving, it goes to the OPENING state.

• OPENING: The trunk is unlocked, the acoustic and visual alert starts and the
trunk is raised.

• WAIT CLOSING INPUT: It stop the visual and acoustic alert. Then the system
waits until the close button is pressed on the touch panel.

• CLOSING: The acoustic and visual signal start and the trunk is closed. If an
obstacle is detected the system returns to the previous state, otherwise it moves
to the WAIT OPENING INPUT state.

Figure 6.4: Trunk Control state machine

6.4 DEMO 51

6.4 DEMO

To verify all the features of the Trunk Control System a DEMO was assembled. It
allows the user to retrace all the states in which the system can be and to interact
with it.

Figure 6.5: Trunk Control DEMO.

Note that for the DEMO realization the display is replaced with an AutoDevKit LCD
board prototype and an ST NFC Reader is added, so that the opening of the Trunk
can also be started approaching an NFC tag.

Chapter 7

Conclusion

In this thesis work, a Trunk Control System was developed using the tools belonging
to the AutoDevKit ecosystem. The developed system is intuitive, affordable, effective
but, above all, innovative. It has several features, as it can: detect a foot; unlock,
lock, raise and lower a car trunk; alert the user through visual and acoustic signals
during the opening and closing phases; detect if the car is in motion; understand if
the trunk encounters an obstacle. The last three features also make the system safe.
The innovation consists in the use of the Time of Flight sensors, together with an
algorithm based on a gesture recognition. This kind of solution allows to use only
two sensors and few computational resources, keeping the cost low. To demonstrate
the potential of this system, a DEMO was created, allowing the user to analyze it up
to the single detail level.

A possible development of the thesis may consist in designing a Printed Circuit
Board integrating the Foot Detection subsystem with a microcontroller dedicated to
the gesture recognition. Furthermore, although the gesture recognition has proved
to be effective, an alternative solution may consist in developing another kind of
algorithm, for example time-based, or even a machine learning model to identify the
foot. Other developments may include a more accurate detection of the car motion
based on multiple sensor feedback. Finally, an integration of the boards is required
to fit space constraints of a typical vehicle.

52

	Introduction
	The Trunk Control System
	AutoDevKit Ecosystem

	Hardware
	Introduction
	AEK-MCU-C4MLIT1 System Control Board
	AEK-CON-5SLOTS1 Connection Board
	VL53L1X Time of Flight Sensors
	AEK-MOT-2DC40Y1
	AEK-LED-21DISM1
	AEK-AUD-C1D9031 Audio Board
	AEK-CON-SENSOR1 and STEVAL-MKI207V1
	AGUHAJSU 2.8 Inch Touch LCD Module

	Software
	Introduction
	SPC5Studio
	PinMap Editor
	How to generate, compile and debug the application

	AutoDevKit Plug-In
	AutoDevKit Components
	Board View.

	Trunk Control Subsystems
	Introduction
	Foot Detection
	Hardware Configuration
	Software Configuration

	Trunk Lock and Lift
	Hardware Configuration
	Software Configuration

	Visual Alert
	Hardware Configuration
	Software Configuration

	Acoustic Alert
	Hardware Configuration
	Software Configuration

	Motion Control
	Hardware Configuration
	Software Configuration

	Infotainment GUI
	Hardware Configuration
	Software Configuration

	Advanced Gesture for Foot Detection
	Introduction
	The gesture recognition
	Detecting Area
	Single Sensor Setup
	Time of Flight Sensor
	Maximum Detecting Distance
	Detecting Base: Single Sensor
	Detecting Base: Double Sensor
	The Gesture Recognition

	Trunk Control System
	Introduction
	Hardware Setup
	State Machine
	DEMO

	Conclusion

