2025-05-01 6:59 PM
I'm currently working on a project where the system enters STOP2 mode, and when a button interrupt occurs, it sends a CAN_TX message. I'm using UART communication to confirm this behavior. The issue is that the CAN transmission works the first time I press the button, but it doesn't work on subsequent presses. I'm wondering—after waking up from STOP2 mode via an interrupt, does the CAN peripheral get reset or require reinitialization? I'm not sure why it's not working after the first time.
</* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "fdcan.h"
#include "icache.h"
#include "memorymap.h"
#include "usart.h"
#include "gpio.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
#include <stdio.h>
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */
__IO uint32_t PushButtonState = PB_NOT_PRESSED;
FDCAN_RxHeaderTypeDef RxHeader;
uint8_t RxData[8]={0,1,0,0,0,0,0,0};
FDCAN_TxHeaderTypeDef TxHeader;
uint8_t TxData[8]={0,0,0,0,0,0,0,0};
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void SystemPower_Config(void);
/* USER CODE BEGIN PFP */
void FDCAN_Config(void);
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int _write(int fd, char *ptr, int len)
{
HAL_UART_Transmit(&huart1, (unsigned char*)ptr, len, HAL_MAX_DELAY);
return len;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the System Power */
SystemPower_Config();
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ICACHE_Init();
MX_FDCAN1_Init();
MX_USART1_UART_Init();
/* USER CODE BEGIN 2 */
// HAL_FDCAN_ConfigInterruptLines(&hfdcan1, FDCAN_IT_TX_EVT_FIFO_NEW_DATA, FDCAN_INTERRUPT_LINE0);
// HAL_FDCAN_ActivateNotification(&hfdcan1, FDCAN_IT_TX_EVT_FIFO_NEW_DATA, 0);
FDCAN_Config();
uint8_t buffer[256];
sprintf((char *)buffer, "START!\r\n");
HAL_UART_Transmit(&huart1, buffer, strlen((char *)buffer), 100);
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{ __HAL_PWR_CLEAR_FLAG(PWR_FLAG_SBF);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, 1);
HAL_Delay(5000);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_5, 0);
HAL_GPIO_WritePin(GPIOA, GPIO_PIN_6, 0);
PushButtonState = PB_NOT_PRESSED;
uint8_t buffer[256];
sprintf((char *)buffer, "Enter STOP2 MODE\r\n");
HAL_UART_Transmit(&huart1, buffer, strlen((char *)buffer), 100);
// __HAL_RCC_PWR_CLK_ENABLE ();
// HAL_PWREx_EnterSTOP2Mode(PWR_SLEEPENTRY_WFI);
// SystemClock_Config();
HAL_NVIC_ClearPendingIRQ(EXTI13_IRQn);
HAL_NVIC_EnableIRQ(EXTI13_IRQn);
while (PushButtonState == PB_NOT_PRESSED);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE3) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_MSI;
RCC_OscInitStruct.MSIState = RCC_MSI_ON;
RCC_OscInitStruct.MSICalibrationValue = RCC_MSICALIBRATION_DEFAULT;
RCC_OscInitStruct.MSIClockRange = RCC_MSIRANGE_0;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_MSI;
RCC_OscInitStruct.PLL.PLLMBOOST = RCC_PLLMBOOST_DIV4;
RCC_OscInitStruct.PLL.PLLM = 3;
RCC_OscInitStruct.PLL.PLLN = 8;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 1;
RCC_OscInitStruct.PLL.PLLR = 2;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLLVCIRANGE_1;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_PCLK3;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_MSI;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_1) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief Power Configuration
* @retval None
*/
static void SystemPower_Config(void)
{
/*
* Switch to SMPS regulator instead of LDO
*/
if (HAL_PWREx_ConfigSupply(PWR_SMPS_SUPPLY) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN PWR */
/* USER CODE END PWR */
}
/* USER CODE BEGIN 4 */
void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin)
{ SystemClock_Config();
/* Prevent unused argument(s) compilation warning */
if(GPIO_Pin == BTN_Pin)
{
PushButtonState = PB_PRESSED;
printf("▶▶ 버튼 눌림 감지!\r\n");
if (HAL_FDCAN_AddMessageToTxFifoQ(&hfdcan1, &TxHeader, TxData) != HAL_OK)
{
printf("HAL_CAN_AddTxMessage error\r\n");
HAL_Delay(100);
}
else
{
printf("HAL_CAN_AddTxMessage completed\r\n");
HAL_Delay(100);
}
}
}
void HAL_FDCAN_TxEventFifoCallback(FDCAN_HandleTypeDef *hfdcan, uint32_t EventFifoIt)
{
printf("Tx Completed1\r\n");
if (EventFifoIt & FDCAN_IT_TX_EVT_FIFO_NEW_DATA)
{
// 전송 완료된 메시지가 TxEvent FIFO에 기록되었음을 의미
printf("Tx Completed\r\n");
}
}
void HAL_FDCAN_RxFifo0Callback(FDCAN_HandleTypeDef *hfdcan, uint32_t RxFifo0ITs)
{
if((RxFifo0ITs & FDCAN_IT_RX_FIFO0_NEW_MESSAGE) != RESET)
{
/* Retrieve Rx messages from RX FIFO0 */
if (HAL_FDCAN_GetRxMessage(hfdcan, FDCAN_RX_FIFO0, &RxHeader, RxData) != HAL_OK)
{
Error_Handler();
}
for(int i=0; i<TxHeader.DataLength; i++)
{
printf("RxData[%d] = %d\r\n", i, RxData[i]);
HAL_Delay(100);
}
}
}
void FDCAN_Config(void)
{
FDCAN_FilterTypeDef sFilterConfig;
hfdcan1.Init.AutoRetransmission = ENABLE;
HAL_FDCAN_ConfigInterruptLines(&hfdcan1, FDCAN_IT_TX_EVT_FIFO_NEW_DATA, FDCAN_INTERRUPT_LINE0);
HAL_FDCAN_ActivateNotification(&hfdcan1, FDCAN_IT_TX_EVT_FIFO_NEW_DATA, 0);
/* Configure Rx filter */
sFilterConfig.IdType = FDCAN_STANDARD_ID;
sFilterConfig.FilterIndex = 0;
sFilterConfig.FilterType = FDCAN_FILTER_RANGE;
sFilterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0;
sFilterConfig.FilterID1 = 0x321;
sFilterConfig.FilterID2 = 0x7FF;
if (HAL_FDCAN_ConfigFilter(&hfdcan1, &sFilterConfig) != HAL_OK)
{
Error_Handler();
}
/* Start the FDCAN module */
if (HAL_FDCAN_Start(&hfdcan1) != HAL_OK)
{
Error_Handler();
}
if (HAL_FDCAN_ActivateNotification(&hfdcan1, FDCAN_IT_RX_FIFO0_NEW_MESSAGE, 0) != HAL_OK)
{
Error_Handler();
}
/* Prepare Tx Header */
TxHeader.Identifier = 0x321;
TxHeader.IdType = FDCAN_STANDARD_ID;
TxHeader.TxFrameType = FDCAN_DATA_FRAME;
TxHeader.DataLength = FDCAN_DLC_BYTES_2; //보낼 바이트 값 설정
TxHeader.ErrorStateIndicator = FDCAN_ESI_PASSIVE;
TxHeader.BitRateSwitch = FDCAN_BRS_OFF;
TxHeader.FDFormat = FDCAN_CLASSIC_CAN;
TxHeader.TxEventFifoControl = FDCAN_STORE_TX_EVENTS;
TxHeader.MessageMarker = 0;
HAL_FDCAN_Start(&hfdcan1);
}
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* @param file: pointer to the source file name
* @param line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */>