2025-09-10 2:13 AM - last edited on 2025-09-10 8:19 AM by mƎALLEm
Hello,
I am working on simple program to read ADC using the STM32u585QII microcontroller.
I am using polling method in Scan mode on 4 channels. All set as 14 bit but understood the readin will be in 12 bit.
The problem is the values I am getting are not reflecting the real value at the input. I am receiving something like
1586 cnts on 1st and 3rd channel and 2395 cnts on 2nd and 4th channel. Values make no sense assuming I have stable (verified with oscilloscope) voltage 1.61V. Vref is 2.5V external.
Also when I am trying change voltage at the inputs the reading doesn't change.
Can someone point me the possible issue with the configuration.
/* USER CODE BEGIN Header */
/**
******************************************************************************
* @file : main.c
* @brief : Main program body
******************************************************************************
* @attention
*
* Copyright (c) 2025 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */
/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
/* USER CODE END PTD */
/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */
/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */
/* USER CODE END PM */
/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc1;
DCACHE_HandleTypeDef hdcache1;
/* USER CODE BEGIN PV */
/* USER CODE END PV */
/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_ADC1_Init(void);
static void MX_DCACHE1_Init(void);
static void MX_ICACHE_Init(void);
/* USER CODE BEGIN PFP */
/* USER CODE END PFP */
/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
int isADCfinished = 1;
uint32_t ADC_Data[4];
uint32_t Singl_Read;
uint32_t timestamp;
int i = 0;
int _write(int32_t file, uint8_t *ptr, int32_t len)
{
for (int i = 0; i < len; i++)
{
ITM_SendChar(*ptr++);
}
return len;
}
/* USER CODE END 0 */
/**
* @brief The application entry point.
* @retval int
*/
int main(void)
{
/* USER CODE BEGIN 1 */
/* USER CODE END 1 */
/* MCU Configuration--------------------------------------------------------*/
/* Reset of all peripherals, Initializes the Flash interface and the Systick. */
HAL_Init();
/* USER CODE BEGIN Init */
/* USER CODE END Init */
/* Configure the system clock */
SystemClock_Config();
/* USER CODE BEGIN SysInit */
/* USER CODE END SysInit */
/* Initialize all configured peripherals */
MX_GPIO_Init();
MX_ADC1_Init();
MX_DCACHE1_Init();
MX_ICACHE_Init();
/* USER CODE BEGIN 2 */
// HAL_ADC_Start(&hadc1)
HAL_PWREx_EnableVddA();
HAL_PWREx_EnableVddIO2();
HAL_PWREx_EnablePullUpPullDownConfig();
HAL_ADCEx_Calibration_Start(&hadc1, ADC_CALIB_OFFSET, ADC_SINGLE_ENDED);
printf("Hello World!!\n");
/* USER CODE END 2 */
/* Infinite loop */
/* USER CODE BEGIN WHILE */
while (1)
{
for(i=0; i<4; i++)
{
HAL_ADC_Start(&hadc1);
HAL_Delay(10);
HAL_ADC_PollForConversion(&hadc1, 1);
// HAL_Delay(10);
Singl_Read = HAL_ADC_GetValue(&hadc1);
switch(i)
{
case 0:
ADC_Data[0] = Singl_Read;
break;
case 1:
ADC_Data[1] = Singl_Read;
break;
case 2:
ADC_Data[2] = Singl_Read;
break;
case 3:
ADC_Data[3] = Singl_Read;
break;
}
}
HAL_Delay(5);
printf("SIN_A = %lu COS_A = %lu SIN_B = %lu COS_B = %lu\n", ADC_Data[0],ADC_Data[1],ADC_Data[2],ADC_Data[3]);
for(i=0; i<4; i++)
{
ADC_Data[i]=0;
}
HAL_Delay(5);
/* USER CODE END WHILE */
/* USER CODE BEGIN 3 */
}
/* USER CODE END 3 */
}
/**
* @brief System Clock Configuration
* @retval None
*/
void SystemClock_Config(void)
{
RCC_OscInitTypeDef RCC_OscInitStruct = {0};
RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/** Configure the main internal regulator output voltage
*/
if (HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_ON;
RCC_OscInitStruct.HSIState = RCC_HSI_ON;
RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLMBOOST = RCC_PLLMBOOST_DIV1;
RCC_OscInitStruct.PLL.PLLM = 1;
RCC_OscInitStruct.PLL.PLLN = 20;
RCC_OscInitStruct.PLL.PLLP = 2;
RCC_OscInitStruct.PLL.PLLQ = 2;
RCC_OscInitStruct.PLL.PLLR = 1;
RCC_OscInitStruct.PLL.PLLRGE = RCC_PLLVCIRANGE_1;
RCC_OscInitStruct.PLL.PLLFRACN = 0;
if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
{
Error_Handler();
}
/** Initializes the CPU, AHB and APB buses clocks
*/
RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
|RCC_CLOCKTYPE_PCLK3;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
RCC_ClkInitStruct.APB3CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK)
{
Error_Handler();
}
}
/**
* @brief ADC1 Initialization Function
* None
* @retval None
*/
static void MX_ADC1_Init(void)
{
/* USER CODE BEGIN ADC1_Init 0 */
/* USER CODE END ADC1_Init 0 */
ADC_ChannelConfTypeDef sConfig = {0};
/* USER CODE BEGIN ADC1_Init 1 */
/* USER CODE END ADC1_Init 1 */
/** Common config
*/
hadc1.Instance = ADC1;
hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV1;
hadc1.Init.Resolution = ADC_RESOLUTION_14B;
hadc1.Init.GainCompensation = 0;
hadc1.Init.ScanConvMode = ADC_SCAN_ENABLE;
hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
hadc1.Init.LowPowerAutoWait = DISABLE;
hadc1.Init.ContinuousConvMode = DISABLE;
hadc1.Init.NbrOfConversion = 4;
hadc1.Init.DiscontinuousConvMode = DISABLE;
hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
hadc1.Init.DMAContinuousRequests = DISABLE;
hadc1.Init.TriggerFrequencyMode = ADC_TRIGGER_FREQ_HIGH;
hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED;
hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR;
hadc1.Init.OversamplingMode = DISABLE;
if (HAL_ADC_Init(&hadc1) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_7;
sConfig.Rank = ADC_REGULAR_RANK_1;
sConfig.SamplingTime = ADC_SAMPLETIME_5CYCLE;
sConfig.SingleDiff = ADC_SINGLE_ENDED;
sConfig.OffsetNumber = ADC_OFFSET_NONE;
sConfig.Offset = 0;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_8;
sConfig.Rank = ADC_REGULAR_RANK_2;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_10;
sConfig.Rank = ADC_REGULAR_RANK_3;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/** Configure Regular Channel
*/
sConfig.Channel = ADC_CHANNEL_11;
sConfig.Rank = ADC_REGULAR_RANK_4;
if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN ADC1_Init 2 */
/* USER CODE END ADC1_Init 2 */
}
/**
* @brief DCACHE1 Initialization Function
* None
* @retval None
*/
static void MX_DCACHE1_Init(void)
{
/* USER CODE BEGIN DCACHE1_Init 0 */
/* USER CODE END DCACHE1_Init 0 */
/* USER CODE BEGIN DCACHE1_Init 1 */
/* USER CODE END DCACHE1_Init 1 */
hdcache1.Instance = DCACHE1;
hdcache1.Init.ReadBurstType = DCACHE_READ_BURST_WRAP;
if (HAL_DCACHE_Init(&hdcache1) != HAL_OK)
{
Error_Handler();
}
/* USER CODE BEGIN DCACHE1_Init 2 */
/* USER CODE END DCACHE1_Init 2 */
}
/**
* @brief ICACHE Initialization Function
* None
* @retval None
*/
static void MX_ICACHE_Init(void)
{
/* USER CODE BEGIN ICACHE_Init 0 */
/* USER CODE END ICACHE_Init 0 */
/* USER CODE BEGIN ICACHE_Init 1 */
/* USER CODE END ICACHE_Init 1 */
/* USER CODE BEGIN ICACHE_Init 2 */
/* USER CODE END ICACHE_Init 2 */
}
/**
* @brief GPIO Initialization Function
* None
* @retval None
*/
static void MX_GPIO_Init(void)
{
/* USER CODE BEGIN MX_GPIO_Init_1 */
/* USER CODE END MX_GPIO_Init_1 */
/* GPIO Ports Clock Enable */
__HAL_RCC_GPIOH_CLK_ENABLE();
__HAL_RCC_GPIOA_CLK_ENABLE();
/* USER CODE BEGIN MX_GPIO_Init_2 */
/* USER CODE END MX_GPIO_Init_2 */
}
/* USER CODE BEGIN 4 */
/* USER CODE END 4 */
/**
* @brief This function is executed in case of error occurrence.
* @retval None
*/
void Error_Handler(void)
{
/* USER CODE BEGIN Error_Handler_Debug */
/* User can add his own implementation to report the HAL error return state */
__disable_irq();
while (1)
{
}
/* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
* @brief Reports the name of the source file and the source line number
* where the assert_param error has occurred.
* file: pointer to the source file name
* line: assert_param error line source number
* @retval None
*/
void assert_failed(uint8_t *file, uint32_t line)
{
/* USER CODE BEGIN 6 */
/* User can add his own implementation to report the file name and line number,
ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
/* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */
Solved! Go to Solution.
2025-09-10 6:02 AM - edited 2025-09-10 6:22 AM
Hello,
You need to use DMA for that. You can't read sequentially the data from the ADC like that:
for(i=0; i<4; i++)
{
HAL_ADC_Start(&hadc1);
HAL_Delay(10);
HAL_ADC_PollForConversion(&hadc1, 1);
// HAL_Delay(10);
Singl_Read = HAL_ADC_GetValue(&hadc1);
switch(i)
{
case 0:
ADC_Data[0] = Singl_Read;
break;
case 1:
ADC_Data[1] = Singl_Read;
break;
case 2:
ADC_Data[2] = Singl_Read;
break;
case 3:
ADC_Data[3] = Singl_Read;
break;
}
}
There is only one register to read the ADC value from and you are reading 4 channels that are stored in the same ADC register and you don't have a good synchronization (moreover using HAL_Delay()) in your implementation. This will completely introduce errors in the reading. Using DMA will manage that sequence automatically and it will fill your ADC_Data[] table with the correct values in their respective order.
2025-09-10 4:22 AM
Welcome to the forum.
Please see How to write your question to maximize your chances to find a solution for best results.
In particular, please give full details of your hardware setup.
@aristot wrote:assuming I have stable (verified with oscilloscope) voltage 1.61V.
Sure, we can assume that - but have you verified that it is actually true?
Have you measured directly at the MCU pins?
2025-09-10 5:18 AM
Sorry for being not clear.
Yes I veriffied it using the oscilloscope directly on MCU pins.
I also verify that VREF is stable.
2025-09-10 5:34 AM
You still haven't given any details of your hardware setup:
2025-09-10 5:48 AM
Appologize but can't share a photo.
The sourcing is as on attached screen.
So I am driving it through 100ohm resistor using the OPA2325 opamp.
2025-09-10 5:58 AM
STM32 schematic ?
2025-09-10 6:02 AM - edited 2025-09-10 6:22 AM
Hello,
You need to use DMA for that. You can't read sequentially the data from the ADC like that:
for(i=0; i<4; i++)
{
HAL_ADC_Start(&hadc1);
HAL_Delay(10);
HAL_ADC_PollForConversion(&hadc1, 1);
// HAL_Delay(10);
Singl_Read = HAL_ADC_GetValue(&hadc1);
switch(i)
{
case 0:
ADC_Data[0] = Singl_Read;
break;
case 1:
ADC_Data[1] = Singl_Read;
break;
case 2:
ADC_Data[2] = Singl_Read;
break;
case 3:
ADC_Data[3] = Singl_Read;
break;
}
}
There is only one register to read the ADC value from and you are reading 4 channels that are stored in the same ADC register and you don't have a good synchronization (moreover using HAL_Delay()) in your implementation. This will completely introduce errors in the reading. Using DMA will manage that sequence automatically and it will fill your ADC_Data[] table with the correct values in their respective order.
2025-09-10 6:14 AM
Sorry for partial print but I can't share full schematic.
2025-09-10 7:03 AM
Perhaps start with converting a single channel and verifying it is working correctly before you move to multiple channels. Multiple channels will require the use of DMA.