cancel
Showing results for 
Search instead for 
Did you mean: 

Nucleo-H753ZI SPI Slave DMA continuously outputs 0xFF 0xFF 0xFF 0xFF; cannot transmit data

Harikrishnan
Visitor

Hello ST Community,

am working with a Nucleo-H753ZI board where the STM32H753ZI is configured as an SPI1 slave, and the SPI master is a TI AM64x R5F core.
The goal is for the STM32 to continuously transmit 4-byte frames over SPI (using DMA) whenever the master clocks the bus.

However, the problem is:The master is receives only FF FF

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * Copyright (c) 2025 STMicroelectronics.
  * All rights reserved.
  *
  * This software is licensed under terms that can be found in the LICENSE file
  * in the root directory of this software component.
  * If no LICENSE file comes with this software, it is provided AS-IS.
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "string.h"
#include "stdio.h"
#include "stdarg.h"
#include "math.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
ADC_HandleTypeDef hadc3;
DMA_HandleTypeDef hdma_adc3;

SPI_HandleTypeDef hspi1;
DMA_HandleTypeDef hdma_spi1_tx;

TIM_HandleTypeDef htim6;

UART_HandleTypeDef huart3;

/* USER CODE BEGIN PV */

#define UART_HANDLE huart3
#define SPI_HANDLE  hspi1

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
void PeriphCommonClock_Config(void);
static void MPU_Config(void);
static void MX_GPIO_Init(void);
static void MX_BDMA_Init(void);
static void MX_DMA_Init(void);
static void MX_TIM6_Init(void);
static void MX_USART3_UART_Init(void);
static void MX_ADC3_Init(void);
static void MX_SPI1_Init(void);
/* USER CODE BEGIN PFP */
static inline uint32_t raw_to_mV(uint32_t raw16);
static void Build_SPI_Sample(uint8_t out[4], uint16_t adc_value, uint16_t sample_index);
static void Process_Block(const uint16_t *p, uint32_t N);


/* callbacks  */
void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc);
void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc);
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi);

/* UART helpers */
static void uart_printf(const char *fmt, ...);

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/*  ADC + SPI working buffers  */

/*  ADC DMA buffer in RAM_D3  */
__attribute__((section(".RAM_D3")))
__attribute__((aligned(32)))
uint16_t adcBuf[480];            /* 480 samples -> two half-buffers of 240 */

static uint16_t shadow_half[240];
static volatile uint8_t shadow_valid = 0;

/*  SPI slave TX state + double buffer  (4 bytes per sample, ping-pong) */

__attribute__((section(".RAM_D3")))
__attribute__((aligned(32)))
uint8_t spi_tx[2][4];

static volatile uint8_t spi_busy     = 0;  /* 1 while a DMA TX is running */
volatile uint8_t        spi_tx_free  = 0;  /* index (0/1) FREE to rebuild next frame */
volatile uint8_t        spi_tx_in_use= 0;  /* index (0/1) currently armed for TX    */

static uint16_t g_sample_index = 0;        /* rolls 0..65535, placed in frame [2..3] */
volatile uint8_t pending_half  = 0;        /* 0 -> [0..239], 1 -> [240..479]         */
static volatile uint8_t last_half = 0;     /* 0 = first half, 1 = second              */

/*  Statistics / thresholds   */

#define STAT_WIN_N  240U         /* half-buffer = 240 samples */
#define HALF_COUNT  STAT_WIN_N

/* Board supply in mV (measured VDDA ) */
#ifndef VREF_MV
#define VREF_MV 3260UL
#endif

/* AC/DC decision thresholds (with hysteresis), in mV */
#define AC_P2P_HI_MV 150U   /* enter AC if >= 150 mV p-p and >= 100 mVrms */
#define AC_RMS_HI_MV 100U
#define AC_P2P_LO_MV 75U    /* return to DC if <= 75 mV p-p and <= 70 mVrms */
#define AC_RMS_LO_MV 70U

/* Running stats (RAW units). Only updated in thread context. */
volatile uint32_t win_mean_raw = 0;
volatile uint32_t win_rms_raw  = 0;
volatile uint16_t win_min_raw  = 0xFFFF;
volatile uint16_t win_max_raw  = 0x0000;

/* Same stats converted to millivolts (for printing/thresholds) */
volatile uint32_t win_mean_mv  = 0;
volatile uint32_t win_rms_mv   = 0;
volatile uint32_t win_min_mv   = 0;
volatile uint32_t win_max_mv   = 0;

/* 0 = DC, 1 = AC (decided with hysteresis) */
volatile uint8_t  signal_is_ac  = 0;

/* flag set by ADC DMA callbacks, consumed in main loop */
volatile uint8_t  stats_pending = 0;

/* RAW -> mV helper */
static inline uint32_t raw_to_mV(uint32_t raw16)
{
    return (uint32_t)((uint64_t)raw16 * (uint64_t)VREF_MV / 65535ULL);
}

/*   UART DMA ring buffer (printf)  */

/* Asynchronous UART TX ring + state for DMA-driven uart_printf() */
#define TXBUF_SIZE 1024
static volatile uint16_t tx_head = 0;   /* next write index */
static volatile uint16_t tx_tail = 0;   /* next DMA start   */
static volatile uint8_t  tx_dma_busy = 0;

/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{

  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MPU Configuration--------------------------------------------------------*/
  MPU_Config();

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* Configure the peripherals common clocks */
  PeriphCommonClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_BDMA_Init();
  MX_DMA_Init();
  MX_TIM6_Init();
  MX_USART3_UART_Init();
  MX_ADC3_Init();
  MX_SPI1_Init();
  /* USER CODE BEGIN 2 */

  /* USER CODE BEGIN 2 */

  HAL_Delay(500);
  /* 1) Start ADC3 + DMA (480 samples total => two halves of 240) */

  if (HAL_ADC_Start_DMA(&hadc3, (uint32_t*)adcBuf, 480U) != HAL_OK) {
      uart_printf("ADC DMA START FAILED\r\n");
  }

  /* 2) Prime SPI ping-pong buffers (4 bytes each) */
  uint16_t seed = shadow_valid ? shadow_half[STAT_WIN_N - 1] : 0;
  Build_SPI_Sample(spi_tx[0], seed, g_sample_index++);
  Build_SPI_Sample(spi_tx[1], seed, g_sample_index++);

  /* Mark one buffer FREE and one IN USE before starting DMA */
  spi_tx_free   = 1;   /* buffer 1 can be rebuilt next */
  spi_tx_in_use = 0;   /* buffer 0 is armed for TX     */
  spi_busy      = 0;

  /* 3) Start SPI1 slave TX DMA (master must clock SCK/NSS) */
  if (HAL_SPI_Transmit_DMA(&SPI_HANDLE, spi_tx[spi_tx_in_use], sizeof(spi_tx[0])) == HAL_OK) {
      spi_busy = 1;
  } else {
      uart_printf("SPI DMA START FAILED\r\n");
      spi_busy = 0;  /* keep running in UART-only mode */
  }

  /* 4) Start TIM6 – triggers ADC conversions at the sample rate */
  if (HAL_TIM_Base_Start(&htim6) != HAL_OK) {
      uart_printf("TIM6 START FAILED\r\n");
  }

  /* 5) Banner */
  uart_printf("System ready - ADC+DMA active; SPI slave primed; UART debug enabled\r\n");

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  /* Infinite loop */
  /* Infinite loop */
  while (1)
  {
      /* 1) If a fresh 240-sample block was frozen, process it here  */
      if (stats_pending) {
          __disable_irq();
          uint8_t half = pending_half;
          stats_pending = 0;
          __enable_irq();

          const uint16_t *src=&adcBuf[ half ? 240 : 0 ];
          memcpy(shadow_half, src, STAT_WIN_N * sizeof(uint16_t));

          Process_Block(shadow_half, STAT_WIN_N);
      }

      /* 2) Print at most every 500 ms over UART */
      static uint32_t last_print_ms = 0;
      uint32_t now = HAL_GetTick();
      if (now - last_print_ms >= 500) {
          last_print_ms = now;

          uint32_t mean_raw, mean_mv, rms_mv, min_mv, max_mv;
          uint8_t  is_ac;

          __disable_irq();
          mean_raw = win_mean_raw;
          mean_mv  = win_mean_mv;
          rms_mv   = win_rms_mv;
          min_mv   = win_min_mv;
          max_mv   = win_max_mv;
          is_ac    = signal_is_ac;
          __enable_irq();

          uint32_t vpp_mv = (max_mv >= min_mv) ? (max_mv - min_mv) : 0U;

          if (is_ac) {
              uart_printf("Mode: AC  raw=%lu  Vrms=%lumV  Vpp=%lumV\r\n",
                          (unsigned long)mean_raw,
                          (unsigned long)rms_mv,
                          (unsigned long)vpp_mv);
          } else {
              uart_printf("Mode: DC  raw=%lu  Vmean=%lu.%03luV\r\n",
                          (unsigned long)mean_raw,
                          (unsigned long)(mean_mv / 1000UL),
                          (unsigned long)(mean_mv % 1000UL));
          }
      }

      /* 3) Simple SPI slave TX: send one 4-byte frame every time TI clocks us */
      {
          uint8_t  frame[4];

          /* Use latest mean_raw as the sample (cast to 16-bit).
             You can change this to adcBuf[0] or any other sample if you want. */
          uint16_t sample = (uint16_t)win_mean_raw;

          Build_SPI_Sample(frame, sample, g_sample_index++);

          /* This blocks until the TI MCSPI master pulls NSS low and clocks 4 bytes */
          if (HAL_SPI_Transmit(&SPI_HANDLE, frame, sizeof(frame), HAL_MAX_DELAY) != HAL_OK)
          {
              uart_printf("SPI TX error, err=0x%lx\r\n",
                          (unsigned long)HAL_SPI_GetError(&SPI_HANDLE));
          }
      }
  }


    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Supply configuration update enable
  */
  HAL_PWREx_ConfigSupply(PWR_LDO_SUPPLY);

  /** Configure the main internal regulator output voltage
  */
  __HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE3);

  while(!__HAL_PWR_GET_FLAG(PWR_FLAG_VOSRDY)) {}

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_DIV1;
  RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSI;
  RCC_OscInitStruct.PLL.PLLM = 8;
  RCC_OscInitStruct.PLL.PLLN = 48;
  RCC_OscInitStruct.PLL.PLLP = 4;
  RCC_OscInitStruct.PLL.PLLQ = 2;
  RCC_OscInitStruct.PLL.PLLR = 2;
  RCC_OscInitStruct.PLL.PLLRGE = RCC_PLL1VCIRANGE_3;
  RCC_OscInitStruct.PLL.PLLVCOSEL = RCC_PLL1VCOWIDE;
  RCC_OscInitStruct.PLL.PLLFRACN = 0;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }

  /** Initializes the CPU, AHB and APB buses clocks
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_D3PCLK1|RCC_CLOCKTYPE_D1PCLK1;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.SYSCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_HCLK_DIV1;
  RCC_ClkInitStruct.APB3CLKDivider = RCC_APB3_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_APB1_DIV4;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_APB2_DIV1;
  RCC_ClkInitStruct.APB4CLKDivider = RCC_APB4_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief Peripherals Common Clock Configuration
  * @retval None
  */
void PeriphCommonClock_Config(void)
{
  RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0};

  /** Initializes the peripherals clock
  */
  PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_ADC|RCC_PERIPHCLK_SPI1;
  PeriphClkInitStruct.PLL2.PLL2M = 4;
  PeriphClkInitStruct.PLL2.PLL2N = 10;
  PeriphClkInitStruct.PLL2.PLL2P = 2;
  PeriphClkInitStruct.PLL2.PLL2Q = 2;
  PeriphClkInitStruct.PLL2.PLL2R = 2;
  PeriphClkInitStruct.PLL2.PLL2RGE = RCC_PLL2VCIRANGE_3;
  PeriphClkInitStruct.PLL2.PLL2VCOSEL = RCC_PLL2VCOMEDIUM;
  PeriphClkInitStruct.PLL2.PLL2FRACN = 0;
  PeriphClkInitStruct.Spi123ClockSelection = RCC_SPI123CLKSOURCE_PLL2;
  PeriphClkInitStruct.AdcClockSelection = RCC_ADCCLKSOURCE_PLL2;
  if (HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief ADC3 Initialization Function
  *  None
  * @retval None
  */
static void MX_ADC3_Init(void)
{

  /* USER CODE BEGIN ADC3_Init 0 */

  /* USER CODE END ADC3_Init 0 */

  ADC_ChannelConfTypeDef sConfig = {0};

  /* USER CODE BEGIN ADC3_Init 1 */

  /* USER CODE END ADC3_Init 1 */

  /** Common config
  */
  hadc3.Instance = ADC3;
  hadc3.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV2;
  hadc3.Init.Resolution = ADC_RESOLUTION_16B;
  hadc3.Init.ScanConvMode = ADC_SCAN_DISABLE;
  hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV;
  hadc3.Init.LowPowerAutoWait = DISABLE;
  hadc3.Init.ContinuousConvMode = DISABLE;
  hadc3.Init.NbrOfConversion = 1;
  hadc3.Init.DiscontinuousConvMode = DISABLE;
  hadc3.Init.ExternalTrigConv = ADC_EXTERNALTRIG_T6_TRGO;
  hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_RISING;
  hadc3.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DMA_CIRCULAR;
  hadc3.Init.Overrun = ADC_OVR_DATA_PRESERVED;
  hadc3.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE;
  hadc3.Init.OversamplingMode = DISABLE;
  hadc3.Init.Oversampling.Ratio = 1;
  if (HAL_ADC_Init(&hadc3) != HAL_OK)
  {
    Error_Handler();
  }

  /** Configure Regular Channel
  */
  sConfig.Channel = ADC_CHANNEL_9;
  sConfig.Rank = ADC_REGULAR_RANK_1;
  sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5;
  sConfig.SingleDiff = ADC_SINGLE_ENDED;
  sConfig.OffsetNumber = ADC_OFFSET_NONE;
  sConfig.Offset = 0;
  sConfig.OffsetSignedSaturation = DISABLE;
  if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN ADC3_Init 2 */

  /* USER CODE END ADC3_Init 2 */

}

/**
  * @brief SPI1 Initialization Function
  *  None
  * @retval None
  */
static void MX_SPI1_Init(void)
{

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_SLAVE;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_8BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_1EDGE;
  hspi1.Init.NSS = SPI_NSS_HARD_INPUT;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 0x0;
  hspi1.Init.NSSPMode = SPI_NSS_PULSE_DISABLE;
  hspi1.Init.NSSPolarity = SPI_NSS_POLARITY_LOW;
  hspi1.Init.FifoThreshold = SPI_FIFO_THRESHOLD_01DATA;
  hspi1.Init.TxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi1.Init.RxCRCInitializationPattern = SPI_CRC_INITIALIZATION_ALL_ZERO_PATTERN;
  hspi1.Init.MasterSSIdleness = SPI_MASTER_SS_IDLENESS_00CYCLE;
  hspi1.Init.MasterInterDataIdleness = SPI_MASTER_INTERDATA_IDLENESS_00CYCLE;
  hspi1.Init.MasterReceiverAutoSusp = SPI_MASTER_RX_AUTOSUSP_DISABLE;
  hspi1.Init.MasterKeepIOState = SPI_MASTER_KEEP_IO_STATE_DISABLE;
  hspi1.Init.IOSwap = SPI_IO_SWAP_DISABLE;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */
  __HAL_SPI_DISABLE(&hspi1);
  MODIFY_REG(hspi1.Instance->CFG1, SPI_CFG1_FTHLV, SPI_FIFO_THRESHOLD_04DATA);
  __HAL_SPI_ENABLE(&hspi1);

  /* Enable SPI1 global interrupt so ErrorCallback can run */
  HAL_NVIC_SetPriority(SPI1_IRQn, 1, 0);
  HAL_NVIC_EnableIRQ(SPI1_IRQn);
  /* USER CODE END SPI1_Init 2 */

}

/**
  * @brief TIM6 Initialization Function
  *  None
  * @retval None
  */
static void MX_TIM6_Init(void)
{

  /* USER CODE BEGIN TIM6_Init 0 */

  /* USER CODE END TIM6_Init 0 */

  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM6_Init 1 */

  /* USER CODE END TIM6_Init 1 */
  htim6.Instance = TIM6;
  htim6.Init.Prescaler = 99;
  htim6.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim6.Init.Period = 199;
  htim6.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim6) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_UPDATE;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim6, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM6_Init 2 */

  /* USER CODE END TIM6_Init 2 */

}

/**
  * @brief USART3 Initialization Function
  *  None
  * @retval None
  */
static void MX_USART3_UART_Init(void)
{

  /* USER CODE BEGIN USART3_Init 0 */

  /* USER CODE END USART3_Init 0 */

  /* USER CODE BEGIN USART3_Init 1 */

  /* USER CODE END USART3_Init 1 */
  huart3.Instance = USART3;
  huart3.Init.BaudRate = 115200;
  huart3.Init.WordLength = UART_WORDLENGTH_8B;
  huart3.Init.StopBits = UART_STOPBITS_1;
  huart3.Init.Parity = UART_PARITY_NONE;
  huart3.Init.Mode = UART_MODE_TX_RX;
  huart3.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart3.Init.OverSampling = UART_OVERSAMPLING_16;
  huart3.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart3.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart3.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart3, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart3, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart3) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN USART3_Init 2 */

  /* USER CODE END USART3_Init 2 */

}

/**
  * Enable DMA controller clock
  */
static void MX_BDMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_BDMA_CLK_ENABLE();

  /* DMA interrupt init */
  /* BDMA_Channel0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(BDMA_Channel0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(BDMA_Channel0_IRQn);

}

/**
  * Enable DMA controller clock
  */
static void MX_DMA_Init(void)
{

  /* DMA controller clock enable */
  __HAL_RCC_DMA1_CLK_ENABLE();

  /* DMA interrupt init */
  /* DMA1_Stream0_IRQn interrupt configuration */
  HAL_NVIC_SetPriority(DMA1_Stream0_IRQn, 0, 0);
  HAL_NVIC_EnableIRQ(DMA1_Stream0_IRQn);

}

/**
  * @brief GPIO Initialization Function
  *  None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};
  /* USER CODE BEGIN MX_GPIO_Init_1 */

  /* USER CODE END MX_GPIO_Init_1 */

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOA_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOD_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOB, GPIO_PIN_12, GPIO_PIN_RESET);

  /*Configure GPIO pin : PB12 */
  GPIO_InitStruct.Pin = GPIO_PIN_12;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);

  /* USER CODE BEGIN MX_GPIO_Init_2 */

  /*  Configure SPI1 pins for very high speed*/
  GPIO_InitStruct.Pin = GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7;  // NSS, SCK, MISO, MOSI
  GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
  GPIO_InitStruct.Alternate = GPIO_AF5_SPI1;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

  /* USER CODE END MX_GPIO_Init_2 */
}

/* USER CODE BEGIN 4 */

/* printf over UART (blocking, thread context only)  */
static void uart_printf(const char *fmt, ...)
{
    char buf[256];
    va_list ap;
    va_start(ap, fmt);
    int n = vsnprintf(buf, sizeof(buf), fmt, ap);
    va_end(ap);
    if (n <= 0) return;

    /* Send with LF->CRLF conversion so terminal always sees CR+LF */
    for (int i = 0; i < n; ++i) {
        uint8_t c = (uint8_t)buf[i];
        if (c == '\n') {
            uint8_t cr = '\r';
            HAL_UART_Transmit(&UART_HANDLE, &cr, 1, HAL_MAX_DELAY);
        }
        HAL_UART_Transmit(&UART_HANDLE, &c, 1, HAL_MAX_DELAY);
    }
}

/* 4-byte SPI sample builder: [ADC_L, ADC_H, IDX_L, IDX_H] */
static void Build_SPI_Sample(uint8_t out[4], uint16_t adc_value, uint16_t sample_index)
{
    out[0] = (uint8_t)(adc_value & 0xFFu);
    out[1] = (uint8_t)((adc_value >> 8) & 0xFFu);
    out[2] = (uint8_t)(sample_index & 0xFFu);
    out[3] = (uint8_t)((sample_index >> 8) & 0xFFu);
}

/* Status-byte helper (bit0 valid, bit1 AC/DC, bit2 under, bit3 over) */
static inline uint8_t build_status_byte(void)
{
    uint8_t s = 0;
    s |= 1u;                                 /* bit0 = data valid / in-sync */
    s |= (signal_is_ac ? 1u : 0u) << 1;      /* bit1 = 1->AC, 0->DC         */
    if (win_min_raw < 10)     s |= (1u << 2);/* bit2 = underrange           */
    if (win_max_raw > 65525)  s |= (1u << 3);/* bit3 = overrange            */
    return s;
}

/* Compute mean/rms/min/max for a 240-sample block + AC/DC state  */
static void Process_Block(const uint16_t *p, uint32_t N)
{
    uint64_t acc = 0;
    uint16_t mn = 0xFFFFu, mx = 0x0000u;

    for (uint32_t i = 0; i < N; i++) {
        uint16_t s = p[i];
        acc += s;
        if (s < mn) mn = s;
        if (s > mx) mx = s;
    }
    uint32_t mean_raw = (uint32_t)(acc / N);

    long long acc_sq = 0;
    for (uint32_t i = 0; i < N; i++) {
        int32_t d = (int32_t)p[i] - (int32_t)mean_raw;
        acc_sq += (long long)d * (long long)d;
    }
    uint32_t rms_raw = (uint32_t)(sqrt((double)acc_sq / (double)N) + 0.5);

    /* publish RAW stats */
    win_mean_raw = mean_raw;
    win_rms_raw  = rms_raw;
    win_min_raw  = mn;
    win_max_raw  = mx;

    /* convert to mV for prints / thresholds */
    win_mean_mv = raw_to_mV(mean_raw);
    win_rms_mv  = raw_to_mV(rms_raw);
    win_min_mv  = raw_to_mV(mn);
    win_max_mv  = raw_to_mV(mx);

    /* hysteresis decision */
    static uint8_t ac_state = 0; /* 0=DC, 1=AC (persistent) */
    uint32_t p2p_mv = (win_max_mv >= win_min_mv) ? (win_max_mv - win_min_mv) : 0U;

    if (!ac_state) {
        if ((p2p_mv >= AC_P2P_HI_MV) && (win_rms_mv >= AC_RMS_HI_MV)) ac_state = 1;
    } else {
        if ((p2p_mv <= AC_P2P_LO_MV) && (win_rms_mv <= AC_RMS_LO_MV)) ac_state = 0;
    }
    signal_is_ac = ac_state;
}

/* ADC DMA CALLBACKS  */

void HAL_ADC_ConvHalfCpltCallback(ADC_HandleTypeDef *hadc)
{
    if (hadc->Instance != ADC3) return;

    pending_half  = 0;   /* first half [0..239] */
    stats_pending = 1;   /* tell main loop to process this half */
    shadow_valid  = 1;   /* we have valid data now */
}

void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef *hadc)
{
    if (hadc->Instance != ADC3) return;

    pending_half  = 1;   /* second half [240..479] */
    stats_pending = 1;   /* tell main loop to process this half */
    shadow_valid  = 1;
}

/* NOTE:
 * No SPI DMA helpers, no HAL_SPI_TxCpltCallback, and no HAL_SPI_ErrorCallback
 * anymore – we are using blocking HAL_SPI_Transmit() from the main loop instead.
 */

/* USER CODE END 4 */


 /* MPU Configuration */

void MPU_Config(void)
{
  MPU_Region_InitTypeDef MPU_InitStruct = {0};

  /* Disables the MPU */
  HAL_MPU_Disable();

  /** Initializes and configures the Region and the memory to be protected
  */
  MPU_InitStruct.Enable = MPU_REGION_ENABLE;
  MPU_InitStruct.Number = MPU_REGION_NUMBER0;
  MPU_InitStruct.BaseAddress = 0x0;
  MPU_InitStruct.Size = MPU_REGION_SIZE_4GB;
  MPU_InitStruct.SubRegionDisable = 0x87;
  MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
  MPU_InitStruct.AccessPermission = MPU_REGION_NO_ACCESS;
  MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_DISABLE;
  MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
  MPU_InitStruct.IsCacheable = MPU_ACCESS_NOT_CACHEABLE;
  MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;

  HAL_MPU_ConfigRegion(&MPU_InitStruct);
  /* Enables the MPU */
  HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);

}

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}
#ifdef USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  *   file: pointer to the source file name
  *   line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

The SPI pins are configured as follows: PB4 = NSS, PA5 = SCK, PA6 = MISO, PB5 = MOSI. SPI mode is CPOL = 0, CPHA = 1, 8-bit data size, FIFO threshold set to 4 bytes, and DMA is enabled for SPI1_TX. The program runs, the ADC works, callbacks fire, and DMA TX is continuously restarted, but the external master always receives 0xFF 0xFF 0xFF 0xFF regardless of the actual ADC data. I need help understanding why SPI slave DMA never outputs my prepared 4-byte buffer on MISO even though DMA callbacks indicate transfers are happening. Why does SPI slave output remains  0xFF not ADC values?  

Any guidance or corrections to my configuration/code would be greatly appreciated.

Thank you.

 

 

 

0 REPLIES 0